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Abstract—A 3D shape optimization algorithm integrates
the geometric parametenzatlon, 3D FE. performance
. analysis, steepest descent method with design sensitivity
and mesh relocation method. The design sensitivity of the
surface nodal points is also systematically converted into
that of the design variables for the application to
parameterized optimization. The proposed algorithm is.
applied to the optimum design of tank shield model of
transformer and the effectiveness is proved.

Index Terms—shape optimization, mesh regeneration, design

sensitivity, deformation theory, eddy current.

I. INTRODUCTION

For the 3D shape optimal design, the deterministic method
combined with the design sensitivity analysis is thought to be,
even more, a good choice [1,2,4]. In the design sensitivity
analysis, the moving points are the nodes on design surface.
Sometimes, the design variables are geometric dimensions. It
is necessary to parameterize the design surface and find the
relationships between the design variables and moving points.
Another important part of the shape optimal design is
renewing the finite element mesh as the design variables

" change. In this process the mesh distortion must be
minimized in order to get an accurate finite element analysis
results, and the newly generated mesh should maintain the
same topology with the previous mesh([3].

In this paper, a parameterized design sensitivity formula for
the 3D eddy current problem is derived in complex form using
finite element and adjoint variable methods. A 3D mesh
regeneration method, based on the deformation of the elastic
body under stress, is also presented. Using the method, a
topologically constant 3D mesh with relatively good quality is
obtained. Finally a 3D shape optimal design algorithm is
developed by integrating the finite element performance analysis,
the steepest descent method with design sensitivity and the mesh

relocation method. The developed algorithm is applied to the

optimal design of the tank shield model of transformer.

II. DESIGN SENSITIVITY FOR 3D EDDY CURRENT
PROBLEM

The governing equations for the 3D electromagnetic
system with time harmonic excitation is:

($11X1=[9). m

With the help of adjoint variable [4], the design sensitivity
of the objective function with respect to the design variables
can be calculated as follows[4]:
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where F is the objective function, [p] is the design
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variable vector composed of the surface nodal points, X is

the state variable, respectively. (] is the solution of (1). It

can be seen that the adjoint variable{4] is independent of the
number of design variables.

The design variables are renewed, using the computed
design sensmvnty, as follows:

@
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where o is the relaxation factor.

III. PARAMETERIZATION OF THE TANK SHIELD

In the design sensitivity formula, it is assumed that the
design variables are surface nodal points. When the shape is
parameterized, the design variables are not the surface nodal
points themselves but the parameters. The design sensitivity for

‘the design variables, hence, should be computed by using those

for the surface nodal points. The tank shield of transformer, in
this paper, is parameterized in the following two ways. The first
parameterization is achieved, as shown in Fig. 1, using the linear
functions. In' this case, the coordmate ‘of the nodal pomt on the
design surface is given as:

=L-x +L‘*‘ L‘(y, -y, when yl<ysyi (5
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where (x;,y;) is the coordinates of node i and L,I,,y; are

explained in Fig.l. The design variables are defined as the
vertexes Li(k=123,4).

Another parameterization is done, as shown in Fig. 2, using
the step functions. In this case, the coordinate of the nodal point
on the design surface is expressed as follows:

x=L-L;, when yl, <y sy} )

where (x;,;) is the coordinates of node i, and L,L;,y{ are

shown in Fig.2. The thickness of the each step, L,(k=12,3,4),
are taken as the design variables,
The relation between the design variables and the coordinate
“of the nodal points on the design surface can be writen in
following matrix form from (5) and (6):

{pI={p,]+{#IC] g

where [p] is the vector composed of the coordinate of the
nodal points on the design surface, the coefficient matrix [#] is
(nsx4) if the nmumber of the nodal point on the design surface is
ns, and [C] is the design variable vector.
The design sensitivity for the design variable can be
computed using (2) and (7) as follows:
A dF Ap]_ dF g ®
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Fig. I Parameterization of the tank shield using linear functions.

{a) overall view, (b) parameters.
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- Fig. 2 Parumeterization of the tank shield using step functions.

{a) overall view, (b} parameters.

IV. MESH RELOCATION USING STRUCTURAL
DEFORMING ANALYSIS

In the shape optimization process, the finite element mesh
is needed to be modified or regenerated according to the
shape change. If the deformation theory of the elastic body
under stress is applied, the consistent and interrelated
properties make the origihal mesh change proportionally and
continuously, and a smooth geometric contour of the shape
can be obtained[3,4].

The gaverning equation of elastic deformation analysis is
used for the mesh relocation during the optimal shape design

of electromagnetic device as

(K}{ax}={f,} ©
where [K] is the global stffiness matrix for stress analysis,
{Ax} is the nodal displacement, that is the amount of
relocation of the nodal coordinates {x}, and {f} is a
fictious load force to control the mesh density appropriately. '
The perturbation of the boundary can be simply considered as
a displacement at the boundary. With no additional external
forces and a given displacements at the boundary, (9) can be
used to find the displacements of the whole nodes. Rewrite
equation (9) as follows in segmented form:
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where {Axb} is the known perturbation of nodes on the
boundary, {Ax,} is the unkown nodal displacement vector for
the interior nodes, and {f} is the fictitious boundary force
acting on the boundary. The unknown interior nodal
displacement vector can be obtained from the following

equation: o
[Kas Kxs} = -[K 4 ax, } (1)

In order to evaluate {Axd}, it is necessary to suppress all the

degrees of freedom that represent the fixed shape contour of a
domain in the finite element analysis. Since this structural
analysis is merely used to get a proper relocation of the interior
nodes from the displacement of the surface nodes, no emphasis -
is placed on simulating actual deformation of a physical
structure. In this reason the material parameters related to (9)
could be free to choose. In order to limit the computation efforts
for mesh regeneration, only a part of the electromagnetic
analysis region can be defined as the structural analysis.

V. NUMERICAL SHAPE QPTIMIZATION EXAMPLES:

By integrating the finite element performance aﬁalysis, the
steepest descent method with design sensitivity and the mesh
relocation method, a novel 3D shape optimal design
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algorithm is developed, and summarized in Fig.3 The
developed algorithm is applied to the optimal design of the
tank shield model of transformer. The transformer tank shield
models, shown in Fig.1 and Fig. 2, are the benchmark model
proposed by the Investigation Committee of the IEE of Japan
for reducing the volume of shielding plate and for
constraining the maximum eddy current density J,, at the

tank within a specified value J,,,(0.24x10° 4/m®)in order to

avoid the local over heating[2]. The tank plate is made of

conducting steel, whose conductivity and relative
permeability are 0.75x10’S/m and 1000, respectively, while
the shielding plate is made of non-conducting grain-orinted
silicon steel of which the relative permeabilities are 3000 and
30 for the easy and hard axes, respectively. The exciting
current has 5484 AT (12A(max), 457 turns, 60Hz).
The objective function and constrains are defined as
follows:
Fe {F,=V[m’] While J oy <Jons
Fr=2Um=Jool [AIn?]  While Jp2J oy
0<Ly, Ly, L, L <0.01 [m]
where J,, and J, are the computed and maximum
allowable values of the maximum eddy current densities in
the tank plate, respectively, and J,,, is set to be less then
T+
The tank shield shape is parametrerized in two ways, as
shown in Fig. 1 and Fig. 2, using the linear functions and step
functions, respectively. In both parameterizations, the design
variables are taken as the dimensions L,L,, L, Ls, and the
design sensitivities are calculated as follows:

dF dfy . dF,
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where the coefficients (8,y)are set to (0.7,0.3) when J,,, is

larger than J,., and (0.3,0.7) when J, is less then
Joms» TESPECtively.
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Fig.3 The optimization system based on design sensitivity analysis

When the tank shield shape is parameterized using the
linear functions, the optimum result is obtained after 20
iterations. Fig.4 shows the variations of the maximum eddy
current density at the tank and the volume of the tank shield
during the optimization process. The initial and optimized
dimensions of the tank shield are compared in Table L. It can
be seen that the maximum eddy current density at the tank is
kept less than the specified value while the volume of the
shielding plate is much reduced. Fig. 5 compare the
distributions of the magnetic flux density at the symmetric
plane, and the distributions of the eddy current at the tank,
respectively, for the initial and optimized shapes. The
relocated meshes for the shielding plate during the
optimization process are shown in Fig. 6.
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Fig.4 The variations of the maximum eddy current density and the volume when

the shape is parameterized using the linear function..

TABLE 1
RESULTS OF THE SHIELD OPTIMIZATION
Ly L Ly L 1 4 Jem
(mm) (m) Am?)
Initial 250 250 250 230 1.000E<4 " 3.64026ES
Optimal 414 216 057 030 0.659E4 2.35463ES

(a) with the initial shape of shielding plate,

L]

(b) with the optimized shiclding plate.

Fig.5 Distributions of the magnetic flux line and the eddy current density.
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When the tank shield is parameterized using the step
functions, the correspondence results are shown in Fig.7,
Fig.8, Fig.9 and Table IL

IR A e s

Fig.6. The relocated meshes for the shielding plate during the optimization

process, where the arrows indicate the moving directions and puted
from design sensitivity.
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Fig.7 The variations of the maximum eddy current density and the volume when

the shielding plate is p ized using the step functions.

Fig.8 Distributions of the magnetic flux and eddy curvent density. (a) with the
initial éhapc of shielding plate, (b) with the optimized shielding plate.

TABLEN
DIMENSIONS OF THE SHIELDING PLATE
WHEN PARAMETERIZED USING STEP FUNCTIONS

L L L L v Jan

{mm} _{m’} (a/m)
Initial shape 250 2.00 100 050  0.600E-4 3.23975ES
Optimal shape 344 229 127 049  0.749E4 2.39120ES
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Fig.9 The relocated meshes for the shielding plate when it is parameterized using
the step functions. (a} initial shape, (b) optimized shape.

V. CONCLUSIONS

A new 3D shape optimization algorithm is developed for the
electromagnetic devices carrying the eddy current. In the
algorithm, the 3D finite element analysis, steepest descent
method with design sensitivity, and mesh relocation method are
combined. Through the numerical applications to the tank shield
of transformer, the strategy using the adjoint variable and design
sensitivity is proved to be very effective for the 3D shape
optimization with small computational efforts.
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