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Abstract

We consider a single-input-single-output nonlinear system
which can be represented in a normal form. The nonlinear
system has a modeling uncertainties including the input
coefficient uncertainty. A high-gain observer is used to
estimate the states variables to reject a modeling
uncertainty. A globally bounded output feedback integral
sliding mode control is proposed to stabilize the closed loop
The proposed integral sliding mode control can
in the

system.
asymptotically stabilize the closed loop system
presence of input coefficient uncertainty.

I. Introduction

Since the separation principle does not hold in the
nonlinear system, a high-gain observer has been used
to reject disturbances due to the imperfect feedback
cancellation and modeling uncertainty for a nonlinear
system with relative degree higher than one system
feedback The use of
high-gain observer to estimate state variable results

in the output controll1].
in the peaking phenomenon of the state variable. A
globally bounded control has been introduced to
reduce the peaking phenomenonf2]. Since the globally
bounded control was introduced, some works in the
various control schemes used the globally bounded
control with high gain observer. The works[3] used
the globally bounded control in the continuous control
scheme. A state feedback controller was designed and
analyzed first in the continuos control scheme, and
then a Lipschitz property of the continuous controller

was used to show that the output feedback controller
can recover the state feedback properties. However an
asymptotic stabilization was not be achieved due to
the presence of a nonvanishing perturbation caused by
the estimation error and modeling uncertainty, but an
ultimate boundness was achieved. The works[4] used
the integral control to achieve the asymptotic stability
in the continuous control. The works[5] used a
globally bounded control in the discontinuous control
scheme such as a sliding mode control{7,8]. The
works[5] also only achieved an ultimate boundness in
the presence of a nonvanishing perturbation. In
particular, an ultimate boundness was achieved in the
presence of input coefficient uncertainty. Since the
discontinuous controller does not have a Lipschitz
property, the design and analysis are different with
the continuous one. The work[6] used an integral
control with sliding mode control to achieve an
asymptotic stability in the presence of input coefficient
uncertainty, but limited to the state feedback. We
propose a new design scheme using an integral
sliding mode control can asymptotically stabilize the
closed~loop system with an high-gain observer in the
presence of input coefficient uncertainty. We show
that
disturbances due to the input coefficient uncertainty

integral sliding mode control can reject

and estimation errors.
II. Problem statement

Consider the single-input single-output nonlinear

system
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w = Flw)+ Glwhu

y = Mw) S
where weR" is the state, u is the control input, y
is the measured output. Suppose that F, G, and h are
sufficiently UseR?™,

F(0)=0, #(0)=0. Therefore the origin w=0 is an
equilibrium point of the open loop system. Since we

smooth function on and

are interested in input-output linearizable nonlinear
system, we assume the following assumption on the
nonlinear system (1).

Assumption 1

For all we U,

@ The system (1) has an uniform relative degree,

ie,
Loh(w)=--=LL 2 %(w)=0 and LcL B~ "h(w)+0
[ J The mapping x= T(w), defined by

x=Limw), 1<i<n and x=[x; %, ,x,ﬂ is a

proper map.

The uniform relative degree assumption is a

necessary and sufficient condition for the mapping
x= T(w)
neighborhood of every we U[7]. The properness of the

to be a local diffeomorphism in the
mapping x= T(w) ensures that it is a diffeomorphism
of U onto 7(U). The change of variables x= T(w)
transforms the system (1) into the following normal

form

x = Ax+ Bl Ax)+ g(x)u]

y = Cx

01 - 0 0

0 0 1 0 0
A= | : B=| :

1} 01 0

0 an, 1 n*l’
C=[1 0 - 0] 1.
where g(x)+#0, Vxe T(U). Let Fol2) and £¢(%) be
a known nominal model of Ax and g(x),

respectively. Suppose that fo(#) and (%) are

sufficiently smooth, fo(0)=0, and £y(*) #0 for all
x< T(U). Note that the mapping T could depend on
the dependence of

unknown parameter, however

unknown parameter does not cause the problem, since

we are interested in output feedback control. We also
assume that the uncertainty of the equation (2)
satisfies the following assumption which is a typical
matching condition on the modeling uncertainty.

Assumption 2 For all xe=T(l), there is a scalar
Lipschitz function p(x) such that

IAx)— £ (D < plx)
lg(x)/ gylx) 11 < &, <1 3)

where kg is nonnegative constant.

Our goal is the design of output feedback controller
to stabilize the nonlinear system given by the
equation (2) over the domain TXU)=D.

III. Observer and sliding surface design
Since we are interested in an output feedback control,
we use the following high-gain observer to estimate

the state variable x,

N a; N .
% = x,~+1+5—}(y— %), i=1,,n—1

a a N ~ N
%, = Eﬁ(y— %))+ (%) + go(X)u (4)
where 3Ci is the estimate of the state variables X;

and € is a positive constant to be specified. The

positive constant @; are chosen such that the roots
of the following equation are in the open left half
plane.
st as" '+t a,_ ;sta,=0
We rewrite the observer equation (4) into the compact
form
%= A+ Bl £ %) + gy( X)ul + D(e)LC(x— %) 5

where L=L[a,-,a,17, and D(e) = diag[1/e 1/e?---1/e].
We choose the following sliding surface

S(x,0)=Mx+o 6)
where M=[m, -, m,_1,1] and M, is chosen such
0 1 -~ = 0
_ 0 0 1 -~ 0
A=| : :
that 0 0 ! is
Ty T M (e xa-)

Hurwitz matrix,
o=— M(Ax+ BKx) — MDE)LC(x—"x) — »(x) where K

is chosen such that A+ BK is a Hurwitz matrix, and

234



002UE HEIMALS S|/ 8IM 7|85 AIAR 3! HMojRol && £

AB) =~ (600 + kS (DI + R JKHD)SCNCx PB)
r'4

where SGN( * ) denotes the signum function and P
is a positive definite matrix such that
P(A+BK)+( A+ BK) TP=—1 Note that
o=—M(Ax+ BK%) was used for the state feedback
case in the presence of input coefficient uncertainty[9].
The sliding surface (6) contains the estimate of state
variable as well as an integrator output ¢. The
reason for the choice of the sliding surface will be
clear as the stability analysis of the closed-loop

system is progressed later on. Let €;=X ;™ 7 i be
the estimation error, and define the scaled variables
¢ =(/e" Ye, The closed-loop equations (2) and
(5) can be rewritten as

& = Ax+ B[ Ax)+ g(x)u]
et = (A—LO¢+eBlAx)—fo ) +{g(x) — g, ¥)}u] (D)

Note that (A—LC)
Wx) = x TPx. Define

L, = xsR"| Vx)sv JCD
Qf} = {¢eR" | 1< c,/ "1}

is a Hurwitz matrix. Let

=029,

where U, is a positive constant such that
0 TRy QA PXL+EDSIPED? 4 5
C¢ are arbitrary positive numbers. Note that
AminC*) and Amx(*) denote the minimum
eigenvalue and maximum eigenvalue of the

arguments, respectively. The set 2 is taken as the
region of interest. We use a globally bounded control
We will

control input # to make a globally bounded control

function as a control input. specify the
later on. The following lemma states that the fast
variables § decays very rapidly during a short time
period with a globally bounded control. The proof of
the lemma is the same as the proof of Lemma 1 in
[7], hence it is omitted.

Lemma 1 Consider the closed-loop system (7) and
suppose that the control input u is globally bounded.
Then, for all (x(0), {0) €L | there exist €, and
T,=T(e)<T; such that for all 0<ele,, i<k for

al [T, T) where k¢ is some positive constant,

Ty is a finite time, and T T3 is the first time x(t)

o

=iz =52%(2002.11.30)

exits from the compact set £2.
Proof: see (7]
3.2. Globally bounded controller design

We will design globally bounded control as we

opposed it in the previous section. Consider the
function

20 =L [ (3 o

(%) gO(Ax)[ Fo(%) + Kx+ (%) —8 ,SGK S)] @)

We take a control input # as 7%, saturated outside

set 2, In particular, let

5
go( x) ,

- 1

u1=m[— B+ K%+ 1'("?6)]’ Uy =—

$i=max 5ol %; () and take the control input
u=s,sal( U, ( %)/s;) + sy5ai( 7y ( %)/s,)SGN(S) ©)
where saf{ -+ ) is the saturation function. One can
verify that %(%) is a globally bounded control input.
Lemma 2 Consider the closed-loop system (7) with
control input u defined by (9). Then

@ the sliding mode condition

SS<—4,l9

is satisfied as long as ||§||(k;€ where 92 is some
positive constant.

@ Ui<ke for an 2T,

Proof: The proof of this lemma has two parts. One
part is to prove that the sliding mode condition is
satisfied with the control input (9). The second part
is to prove that & is O(e) for all =T} The first
part can be proved using the equation (9) and the

fact that =7 for X€£, which is provided by
ldiKke Using the dervative of S along the

trajectories of the equation (7), it can be seen that

SS = Slfe(™)+ g Wu— Kx— (%]
= S[—48,SGM 9]

< —8,SGMNS)

where 6;¢8; is some positive constant. Lemma 1
implies that 181<& as long as the state variable.
%=L, for all time. Therefore we will show that
x€Q, for all time. Using %=zx— D(), - the
derivative of W(x)=ux TPx along the trajectories of the

equation (7) is given by
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V(x) = x TH(Ax+ BKx~BKD(&)?)
+(Ax+ BKx— BKD(&)?) TPx

+2¢ TPBIAR - A 0) + A% — £ %)
+ ﬁ‘%(—gﬂ)(—")< Fo () + K%)

+—ED)_ (2D _ 5 soNS)]
2o PREY)

where D(e)=diagle™ ', e %, - 11
Using
%) =—1_—1k,l(f’(‘x)  kdf B+ & JKH)SGNCx TPB)

(10

%=x— D(e)¢, it can be verified that

V() < ————(—(25+z(1+k 8 PBI
+ Ke)

for sufficiently small €& Note that kl and kz are

independent with & Therefore V(x)<0 for V(x)>01

Cl=ﬁi<i’7 (24 s (PY(1+£ )8, IIPEID 2

__V(_)__
mm(P)
(11

where
Since V,? €1, X can not leave the set £2,.

Lemma 2 implies that there is a finite time to reach
the sliding manifold S=0 and S=0 holds thereafter.
We
performing the Lyapunov analysis for the closed-loop
system in the sliding manifold.

Theorem 1 Consider the closed-loop system(7) with
the control input (9). Suppose that Assumption 1 and
2 are satisfied Then for all (x(0),{0)€82y there is

€220 such 0< e<ey that
lim(x, =0
o0

can reach the following conclusion after

that for all such

and O is bounded.
Proof: Since the sliding mode condition is satisfied,

the control input % can be replaced by

%, (%, )= [=fy (D + Kx+ ()]

1
g o( )
in the sliding manifold which is the same as the

control input % defined in the equation (9) with
8, =0 Let WMx,)=xTPx+¢{"P{ where P is a

positive definite matrix such that
PA—-LCO+(A—LC) TP=—1 The derivative of
Wx, &) along the trajectories of the equation (7) is
given by

Wx,0) = V(00— SlE2+2¢ 7PB
[AD =A%) + 00 = £o(D)

+Mfﬂ)(—")( Fo () +Kx+ 70)]
0

17218 ALY % HOIE0} B A0S

=28(2002.11.30)

where V()4 - denotes V(x) with 8;=0 in the
equation (10). Using the inequality (11) with

0,=0, it can be verified that

Wz ) < il 2+2k, lldliidll + 22 101 Z—%Iléﬂ 2
+2k 1141 2+ 2k 1l

— Il 2+ 2 N + 2 10 2 — 1y 2

—timan |t ks ol
{ksle ZkJ i

for some positive constant ka, k4, ks, and ke. Note

that k3 ~ ks are independent with Elet
P2= 1 ) k5

ks _S‘Zke . P, is a positive definite matrix
for sufficiently small & Thus implies that

0. Since

lim(, )= % is bounded and SS<— &S,
o is bounded for all time.
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