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CONFIDENCE INTERVALS ON THE
AMONG GROUP VARIANCE COMPONENT IN A
REGRESSION MODEL WITH AN UNBALANCED

ONE-FOLD NESTED ERROR STRUCTURE

Dong Joon Parkl)

In this article we consider the problem of constructing confidence intervals for a
linear regression model with nested error structure. A popular approach is the
likelihood-based method employed by PROC MIXED of SAS. In this paper, we
examine the ability of MIXED to produce confidence intervals that maintain the
stated confidence coefficient. Our results suggest the intervals for the regression
coefficients work well, but the intervals for the variance component associated
with the primary level cannot be recommended. Accordingly, we propose
alternative methods for constructing confidence intervals on the primary level
variance component. Computer simulation is used to compare the proposed
methods. A numerical example and SAS code are provided to demonstrate the

methods.
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1. INTRODUCTION

In applications using a linear regression model with nested error structure, one might
consider inferences for variance components of the model. A regression model with an
unbalanced one-fold nested error structure includes two variance components-one in the
primary level and one in the secondary level. This article considers confidence intervals for
the variance component of the primary level. The model is described in Section 2 and
confidence intervals for the primary level variance component are presented in Section 3. A
simulation study for comparing the proposed intervals and conclusions are summarized in

Section 4.

2. A REGRESSION MODEL WITH AN UNBALANCED ONE-FOLD
NESTED ERROR STRUCTURE

The regression model with an unbalanced one-fold nested error structure is written as
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Vi =p+t B Xyt 60Xyt . .t B X st At By (2.1

izl,...,g; j=l,---,ni

where Y ; is the j th random observation in the ¢ th primary level, #,B1,..., B, are
unknown constants, X 1;,...,X g are fixed predictor variables, and A; and E are
jointly independent normal random variables with zero means and variances OZA and ozE
respectively. Further, #n;21, 025, n;>1 for at least one value of 7 %71, and

n=3%_1n; Model (2.1) is written in matrix notation as

Y=XpB+ BU+E (2.2)

where Y is a #Xx1 random vector of observations, X is a #nXx{(k+1) matrix of

known values with a column of 1’s in the first column, £ is a (k+1) X1 vector with
elements /, By, ..., Be B=®%., 1,,, is a nxg design matrix, Uis a gX1 vector

of random effects, and E is a #nX1 vector of random error terms. Under the

distributional assumptions of (2.1), Y has a multivariate normal distribution with mean
X B and covariance matrix 631 BB + ozE I, where I, is an #X# identity matrix. It is
also assumed s= rank ( X*)— rank ( X) and #=#xn— rank ( X") are both positive

where X*=( X, BB’) is the horizontal concatenation of matrices X and BB’.

3. CONFIDENCE INTERVALS ON &

Two methods for constructing a confidence interval for 651 are presented in this section.
El-Bassiouni(1) and Eubank, Seely, and Lee(2) proposed two mean squares that can be

used to construct confidence intervals for 0%1 These mean squares were earlier proposed
by Olsen, Seely, and Birkes3). Let W = FBB'F where F= X"( X" X")*" X"

- X(X’'X)* X’ and * denotes a Moore-Penrose inverse. Let d), d , ... , d,, denote
the distinct positive eigenvalues of | W , and #», be the multiplicity of d; for

[=1,..,m Note that rank( W) = Zr, =35 Now define Z= FY and

S2 = 7' Wt Z/s. Finally, define Sz =Y [ I,— X (X" X")"X"'1X/r. The

following results are verified in the previously cited references:
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rSE/oE ~ X, (3.1a)
$S%/d% ~ x5 whenever 0 = 0, and (3.15)
S% and S% areindependent (3.1¢0)

Further, under certain conditions SS%,,/ E(Si,;) has a limiting chi-squared distribution

where E(SY) = d4+o%/h andh = s( 2,7,/ d;) "} is the harmonic mean of the

eigenvalues. In particular,

SH/E(Si) ~ Zici(0) 1 s, (3.20)
l—p+d,o

Cl(p) = d;(l—p)/hi}-d,p’ (32b)

2z (3.20)

s

and the er, are mutually independent. If all ¢;(0) — 1, then S%/E(S%) has a
limiting xf / s distribution. This occurs, for example, when o — 1, or if all d;, — d.

A confidence interval for ¢4 = E (S%) — 0%/h can be based on S% and SZ using a
method proposed by Ting, Burdick, Graybill, Jeyaratnam and Lu (4). Although this method

requires two independent mean squares that have scaled chi-squared distributions, S%, and

S%; closely mimic these conditions. The Ting et al. 1—2a two-sided confidence interval

for qu is
1
(St = 5 St (GiSi+ —7 H3Sh+ 5 GuSiSh) ¥
Sty — 4 SbH(HiSh+ Jr Gist+ L HLSESET T (3.9)

where  GI=1=1/F| 4w,  Hy=1Fapo=1  Gp=[(Fi-g,~ 1’
—GiFiws,~Hil/Fiesn  Hi=UFuse=1l  G=1-1Fi o
H12=[(l—Fa;s,,)2~*H%an;s,r— G%]/Fa;s‘r, and Fs.471.4p is the F-percentile
with degrees of freedom df; and df; with area ¢ to the left. Negative lower bounds are

increased to zero. This method is referred to as TINGM method. Given the distributional

assumptions of model (2.1), interval (3.3) is expected to perform well for large values of p
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( 6?; is small relative to 6?4).
Another important result provided by Olsen et al. (3) is that

Q = Z E, Z~(c%+d/dA)x,} I=1,..,m, (3.4)

where E; is the orthogonal projection operator of the eigenspace of d; The variables

S, Q1,..., &, are mutually independent and so it follows

Z—Q’ =U (3.5)

6%+ d, 04

has a chi-squared distribution with § degrees of freedom. This result can be used to form

a generalized confidence interval for o‘i; in the following manner. Tsui and Weerahandi(5)

introduced the concept of generalized inference for testing hypotheses and constructing
confidence intervals in situations where exact methods do not exist. Application of the
method requires a generalized pivotal quantity that satisfies several conditions. We use (3.5)

as our GPQ and define R as the solution for ¢ ?4 in the non-linear equation

4 _
g:l rse | W+ d,o4 v (3.6)

where g, and SZE are observed values of @, and S ?5, respectively, and W= »S 2E/ GZE
and U= 2 Q;/(o‘:ﬁ; + d,di;) are jointly independent observable chi-squared random

variables with degrees of freedom # and s, respectively. Note the distribution of R is

completely determined by the joint distribution of W and U and is free of the parameters
contained in model (2.1). An approximate 100(1—a@) % confidence interval for 0‘34 is

now defined as
[Ra/Z ; Rl—a/z] (3.7)

where R, is the percentile @/2 of the distribution of R and R ., is percentile

1— /2. This method is referred to as GEN method. We used simulation with 10,000

iterations to model the distribution of R in the following manner. The observed values ¢,
and szE for a given data set are placed in equation (3.6). A set of random variables U

and W are then simulated. If U > qul/(TSZE), then we set R = 0 since a4 = 0.
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It U< W2.q /(7s%) then the bisection method is used to solve the non-linear equation
! E

in (3.6).

4. SIMULATION STUDY AND CONCLUSIONS

The methods proposed in Section 3 are now compared using a simulation study. The
criteria for analyzing the performance of the methods are their ability to maintain stated
confidence coefficient, and the average length of two-sided confidence intervals. Although
shorter average interval lengths are preferable, it is necessary that the methods first
maintain the stated confidence coefficient. Five unbalanced patterns selected for the study
are shown in Table L.

Table 1. Unbalanced Patterns Used in Simulations

Pattern g n;
1 3 510,15
2 3 1,1,100
3 6 1,1,1,1,1,100
4 6 1,1,2,350,
5 10 1.1,4,5,6.6,8,8,10.10

Recall p= 04 /(c4 + 0%). Without loss of generality, we set 04 = 1—0% so that
p=04 and 1—p= 0% The random variables A; and E; were independently

generated from normal populations with zero means and variances © and 1-p,

respectively, using the RANNOR routine of SAS. Responses for the Y,-,~ were constructed

according to model (2.1) using a fixed set of values for X 4 Values of p were varied
from 0.001 to 0.999 in increments of 0.1. Simulations of 2,000 iterations were performed for
each value of p in each pattern. Two-sided intervals were computed for each proposed
method. Confidence coefficients were determined by counting the number of the intervals
that contain 0?4. The average lengths of the two-sided confidence intervals were also
calculated. Using the normal approximation to the binomial, if the true coefficient is  0.90,
there is less than a 2.5 % chance that an estimated confidence coefficient based on 2,000

replications will be less than 0.887.
Using this criterion, the GEN method maintains the stated confidence coefficients across all

values of o for all patterns. In contrast, TINGM provides a confidence coefficient less than
the stated level in cases where p is small in the last four patterns. This is because
51214/0'124 has an exact chi-squared distribution only when (7',25 = () (p=1). The average
interval lengths are comparable for the two methods. Thus, in situations where @ is

thought to be small (say © < (0.4), TINGM is not recommended for extremely unbalanced
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datasets. In any other situation, either method can be recommended.

REFERENCES

1. El-Bassiouni, M. Y(1994). Short confidence intervals for variance components,
Communications in statistics-Theory and Methods, 23(7), 1915-1933.

2. Eubank, L.; Seely, J; Lee, Y(2001). Unweighted mean squares for the general two
variance component mixed model,Graybill Conference, Ft. Collins, Co. June.

3. Olsen, A; Seely, J; Birkes, D(1976). Invariant quadratic unbiased estimation for two
variance components, Annals of Statistics, 4, 878-890.

4. Ting, N; Burdick, R. K.; Graybill, F. A.; Jeyaratnam, S.; Lu, T.-F. C(1990). Confidence
intervals on linear combinations of variance components, Journal of Statistical
Computation, 35, 135-143.

5. Tsui, K.; Weerahandi, S(1989). Generalized p-values in significance testing of hypotheses

in the presence of nuisance parameters, Journal of the American Statistical
Association, 84, 602-607.

- 146 -



	GCGHA2_2002_y2002m11a-0148.tif
	GCGHA2_2002_y2002m11a-0149.tif
	GCGHA2_2002_y2002m11a-0150.tif
	GCGHA2_2002_y2002m11a-0151.tif
	GCGHA2_2002_y2002m11a-0152.tif
	GCGHA2_2002_y2002m11a-0153.tif

