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Burn-in When Minimal Repair Costs Vary With Time *

Myung Hwan Na !t and Sangyeol Lee }

ABSTRACT
Burn-in is a widely used method to eliminate initial failures. Preventive maintenance
policy such as block replacement with minimal repair at failure is often used in field op-
eration. In this paper burn-in and maintenance policy are taken into consideration at the
same time. The cost of a minimal repair is assumed to be a non-decreasing function of its
age. The problems of determining optimal burn-in times and optimal maintenance policy

are considered.
1. Introduction

Let F(t) be a distribution function of a lifetime X. If X has density f(t) on [0, 00), then
its failure rate function h(t) is defined as h(t) = f(t)/F(t), where F(t) = 1 — F(¢) is the
survival function of X. Based on the behavior of failure rate, various nonparametric classes
of life distributions have been defined in the literature. The following is one definition of a

bathtub-shaped failure rate function which we shall use in this article.

Definition. A real-valued failure rate function h(t) is said to be bathtub-shaped failure
rate (BTR) with change points ¢; and 3, if there exist change points 0 < #; < {2 < 00, such
that h(t) is strictly decreasing on [0,¢1), constant on [t1,%;) and then strictly increasing on

[tg, OO)

The time interval [0,#;] is called the infant mortality period; the interval (t,,¢2], where h(t)
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is flat and attains its minimum value, is called the normal operating life or the useful life;
the interval [t2, 00) is called the wear-out period.

Burn-in is a method used to eliminate the initial failures of components before they are
put into field operation. The burn-in procedure is stopped when a preassigned reliability
goal is achieved, e.g. when the mean residual life is long enough. Since burn-in is usually
costly, one of the major problem is to decide how long the procedure should continue. The
best time to stop the burn-in process for a given criterion to be optimized is called the
optimal burn-in time. An introduction to this important area of reliability can be found in
Jensen and Petersen (1982). In the literature, certain cost structures have been proposed
and the corresponding problem of finding the optimal burn-in time has been considered. See,
for example, Clarotti and Spizzichino (1991) and Mi (1994). A survey of recent research in
burn-in can be found in Block and Savits (1997).

Mi (1994) consider the following procedure. Consider a fixed burn-in time b and begin
to burn-in a new component. If the component fails before burn-in time b, then repair it
completely with shop repair cost, then burn-in the repaired component again and so on. If
the component survives the burn-in time b, then it is put into field operation. For a burned-
in component he consider the block replacement policy with minimal repair. Cha (2000)
consider that the failed component is only minimally repaired rather than being completely
repaired during a burn-in period. He adopt block replacement policy with minimal repair
at failure, assuming that the cost of minimal repair at failure is constant

In this paper, it is assumed that the cost of a minimal repair to the component which
fails at age ¢ is is a continuous nondecreasing function of . Hence, as the component ages
it becomes more expensive to perform minimal repair. It is shown that the optimal burn-in
time b* must occur before the change point ¢; of h(t) under the assumption of a bathtub-
shaped failure rate function. Explicit solutions for the optimal burn-in time and preventive

maintenance policy are given for the Weibull-exponential distribution.

2. Expected Minimal Repair Cost
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Consider a fixed burn-in time b and begin to burn-in a new component. If the component
fails before burn-in time b, then repair it minimally, and then continue the burn-in procedure
for the repaired component. After the fixed burn-in time b, the component is put into field
operation. For a burned-in component, block replacement policy with minimal repair at
failure is adopted. Under this policy the component is replaced by a burned-in component
at planned time kT (k =1,2,---), where T is a fixed number, and is minimally repaired at
failure between planned replacements.

Let Nz(y) be the random variable denoting the number of minimal repairs performed
on the component in [z,z + y]. It is well known that N,(y) has a Poisson distribution
with parameter H;(y) = H(z + y) — H(z) where H(t) = fot h(s)ds. Let C(t) be the
cost of minimal repair to the component which fails at time ¢, where C(t) is a continuous
nondecreasing function of ¢. Now if N (y) =k, and ¢;,---,#; are the times of the minimal
repairs, then the total minimal repair cost in the interval [z,z + y] is Zle C(t;). Given
Nz(y) = k, we know that 7y = H(t;),---,7x = H(ts) are distributed as the order statistics
of a random sample of size k from the uniform distribution on [H(z), H(z + y)]. Hence the

expected minimal repair cost in the interval [z,z + y] is

En,y)(E(C(t1) + -+ + C(tg)|No(y) = k)
= En,y) (KE(CHT(7))|N:(y) = k))

k H(z+y) ol
Erate (H(w+y>—H(z) J “”‘”)

1 H(z+y) COI- (i) B
(H(a:+y) — H(z) /H(x) ( Q) t) Na(y) (K)

H(z+y)
= / C(H™(t))dt
H(z)

z+y
/ C(H)h(2)dt. (1)

3. Optimal Burn-in

Let C1(t) and C;(t) denote the costs of a minimal repair which fails at time ¢ during
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burn-in period and in field operation, respectively. We assume that Ci(t) < Ca(t) for all
t >0, then this means that the cost of a minimal repair during a burn-in procedure is lower
than that of a minimal repair in field operation. Then from (1) the expected minimal repair

costs in the interval [0,d] and [b,b + T are given by
b b+T
/ Ci(t)h(t)dt and Co(t)h(t)dt,
0 b

respectively. Let co(b) be the cost for burn-in, where co(b) is a continuous nondecreasing

function of b. Hence the long-run average cost C(b,T) is given by

C,T) = %(co(b) + /0 ' Cr Rt + o + /b . Cg(t)h(t)dt>, @)

where ¢, the cost of a replacement.

Theorem 1. Suppose the failure rate function h(t) is differentiable and BTR with change
points t; and ty. If Co(t)h(t) is not eventually constant, then the optimal burn-in time b

and the corresponding optimal age T* = Ty satisfy

0<b*<t; andT*=T,. >0.

Corollary 2. Suppose the failure rate function h(t) is differentiable and BTR with change
points t; and t. If Co(¢)h(t) is non-decreasing and not eventually constant, then the optimal

burn-in time b* is 0 and the corresponding optimal age T* exists uniquely.
4. Examples

Suppose that the failure rate of a component has a Weibull-exponential distribution i.e.
af(£)F1 0<t<h
h(t) =
af(&)ft >,
where 0 < 8 < 1 is the shape parameter, a is the scale parameter and #; is the change point.
The failure rate function is strictly decreasing on [0,¢:] and stays at a constant for ¢ > ;.

We take co(b) = cob, Ci(t) = ciexp(aH (t)) for i = 1,2 with ¢; < c,. Table 1 presents the

- 150 -



U e, ol dd

Table 1 Optimal burn-in time b* and maintenance policy T for

Weibull-exponential distribution

ty

1 2 3

cr b* T* b* T b* T
3.0 | 0.0098 2.9849 | 0.0142 3.7578 | 0.0165 4.3012
4.0 | 0.0080 3.2052 | 0.0118 4.0117 | 0.0141 4.5702
5.0 | 0.0066 3.3980 | 0.0100 4.2360 | 0.0120 4.8101
6.0 | 0.0057 3.5696 | 0.0086 4.4376 | 0.0105 5.0268
7.0 | 0.0049 3.7249 | 0.0076 4.6207 | 0.0090 5.2253
8.0 | 0.0043 3.8669 | 0.0066 4.7892 | 0.0081 5.4079
9.0 | 0.0038 3.9977 | 0.0058 4.9451 | 0.0072 5.5778
10.0 | 0.0034 4.1193 | 0.0054 5.0901 | 0.0066 5.7363

optimal burn-in time * and maintenance policy T* when a =1, 8 = 2/3,a = 0.5, ¢o = 0.5,
¢; = 1, ¢ = 2 and various choice of ¢, and ¢;.
From Table 1 we notice that the optimal burn-in time b* becomes shorter and T gets

greater as ¢, increases. We also notice that b* and T™ get greater as ¢; increases.
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