Characterization of some classes of distributions related to operator semi-stable distributions.

Sang Yeol Joo¹ and Gyeong Suk Choi¹

ABSTRACT

For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on \mathbb{R}^d are defined. The operator m-semi-stability is a generalization of the definition of operator semi-stability with exponent Q. Translation of strictly operator m-semi-stable distribution is discussed.

Keywords: operator semi-stability, semi-stability, operator stability, strictly semi-stability

1. Introduction

Let m be a positive integer. In [3], the classes of m-semi-stable and strictly m-semi-stable distributions on R^d were studied. In one dimension, they are first investigated by Lévy [4]. The characterization of these classes on R was developed by Linnik [5], Shimizu [9], Ramachandran and Rao [6], and others. Extension to multidimension was done by Krapavickaitė(1980) and Choi [3]. Here we extend those classes to linear operator cases.

Let $I(R^d)$ be the collection of infinitly divisible distributions on R^d . The characteristic function of $\mu \in I(R^d)$ is denoted by $\widehat{\mu}(z)$, $z \in R^d$. Let $M_+(R^d)$ be the class of linear operators on R^d all of whose eigenvalues have positive real parts. Let $0 < b_l < 1$, $Q \in M_+(R^d)$ and m a positive integer in this paper throughout. We call a distribution μ on R^d operator m-semi-stable if $\mu \in I(R^d)$ and there exist real numbers b_l , c_l , $l = 1, 2, \dots, m$, and a vector $\gamma \in R^d$ satisfying

$$c_l > 0$$
, $\sum_{l=1}^{m} c_l > 1$, and $\sum_{l=1}^{m} b_l c_l = 1$

¹Department of Statistics, Kangwon National University, Chunchon, 200-701, Korea

such that

$$\widehat{\mu}(z) = e^{\langle \gamma, z \rangle} \Pi_{l=1}^m \widehat{\mu}(b_l^{Q'} z)^{c_l}. \tag{1.1}$$

The class of distributions satisfying (1,1) is denoted by $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. We call distributions in $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi – stable. Here \langle, \rangle is the Euclidean inner product in R^d and Q' is the adjoint of Q.

Further, a distribution μ on R^d is strictly operator m-semi-stable if $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ satisfying

$$\widehat{\mu}(z) = \prod_{l=1}^{m} \widehat{\mu}(b_l^{Q'} z)^{c_l}. \tag{1.2}$$

The class of distributions satisfying (1.2) is denoted by $OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$. We call distributions in $OSS_0(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ strictly $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi – stable. The distribution satisfying (1.1) with Q = I is a m-semi-stable distribution in the sense of [3].

The main purpose of this paper is to obtain a characterization of translations of strictly operator $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi-stable distributions and to discuss relations between translation of strictly operator semi-stable distribution and translation of strictly operator $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi-stable distribution.

Our results in this paper are extension of results in [1,2,3], [7] and [8].

2. Preliminaries

We begin with some notation. Let θ_j , $1 \leq j \leq q+2r$ denote all distinct eigenvalues of Q such that $\theta_1, \ldots, \theta_q$, are real if $q \geq 1$ and that $\theta_{q+1}, \ldots, \theta_{q+2r}$, are non-real and $\theta_j = \overline{\theta_{j+r}}$ for $q+1 \leq j \leq q+r$ if $r \geq 1$. Let $\theta_j = \alpha_j + i\beta_j$ where α_j and β_j are real numbers. Let $f(\zeta)$ be the minimal polynomial of Q with $f(\zeta) = f_1(\zeta)^{n_1} \ldots f_{q+r}(\zeta)^{n_{q+r}}$, where $f_j(\zeta) = \zeta - \alpha_j$ for $1 \leq j \leq q$ and $(\zeta - \alpha_j)^2 + \beta_j^2$ for $q+1 \leq j \leq q+r$. We write W_j for the kernel of $f_j(Q)^{n_j}$ in R^d , $1 \leq j \leq q+r$. We denote the kernel of $(Q-\theta_j)^{n_j}$ in C^d , $1 \leq j \leq q+2r$, by V_j . Let T_j be the projector onto V_j . We denote

$$D_i = \{(Q - \theta_i)v : v \in V_i\}$$
 in C^d , $1 \le j \le q + 2r$.

Let P_j be the projector onto D_j in C^d , $1 \le j \le q + 2r$. We easily show the following proposition.

Proposition 2. 1 Suppose that 1 is not an eigenvalue of $\sum_{l=1}^{m} c_l b_l^Q$. Then any $\mu \in OSS(b_1, \dots, b_m, c_1 \dots, c_m, Q)$ is a translation of a strictly $(Q, b_1, \dots, b_m, c_1 \dots, c_m)$ -semi-stable distribution.

We set $J=\{j: 1\leq j\leq q+2r \text{ satisfying } \sum_{l=1}^m c_l b_l^{\theta_j}=1 \text{ and } \alpha_j>1/2\}$ and $\Gamma=\{j: 1\leq j\leq q+r \text{ satisfying } \alpha_j>1/2\}$. Let $W_\Gamma=\oplus_{j\in\Gamma}W_j$, and let

$$S_{\Gamma} = \{ \xi \in W_{\Gamma} : |\xi| = 1, |u^{Q}\xi| > 1 \text{ for all } u > 1 \}.$$

Any $x \in W_{\Gamma}$ is uniquely expressed as $x = u^{Q} \xi$ with $\xi \in S_{\Gamma}$ and $u \in (0, \infty)$. For some 0 < b < 1, let OSS(b, Q) be the class of $\mu \in I(\mathbb{R}^{d})$ such that

$$\widehat{\mu}(z) = e^{\langle \gamma, z \rangle} \widehat{\mu}(b^{Q'}z)^c$$

for some c > 0 and $\gamma \in \mathbb{R}^d$. Distributions in OSS(b,Q) are called (Q,b)-semi-stable. For some 0 < b < 1, $\mu \in OSS_0(Q,b)$ means that

$$\widehat{\mu}(z) = \widehat{\mu}(b^{Q'}z)^c$$

for some c>0. Distributions in $OSS_0(b,Q)$ are called *strictly-* (Q,b)-semi-stable. We note that operator 1-semi-stable distribution is (Q,b)-semi-stable distribution. For any $\rho>0$, $A_m(0)$ and $A_m(\rho)$ are, respectively, the sets of all m-tuples (b_1,\cdots,b_m) with $0< b_i<1$, $j=1,\cdots,m$, satisfying the following conditions.

 $A_m(0)$: for some l and i, $log b_l/log b_i$ is an irrational number,

 $A_m(\rho): log b_l/log b_i$ is a rational numbers for every l and i, and $m_l = -log b_l/\rho$, $l = 1, \dots, m$, are positive integers with their greatest common factor equal to one. Using tool in Lemma 2.1 in [1], we can show the following lemma.

Lemma 2. 2 For $1 \le j \le q + 2r$, set

$$g_{j,0}(b_1\cdots,b_m,\xi) = \int_0^\infty u^{\theta_j} T_j \xi \sum_{l=1}^m c_l \left(\frac{1}{1+|u^Q\xi|^2} - \frac{1}{1+|(\frac{u}{b_l})^Q\xi|^2} \right) d\left(\frac{-H_{\xi}(u)}{u} \right),$$

where $H_{\xi}(u)$ will be given in Section 3. Then the function $g_{j,0}(b_1 \cdots, b_m, \xi)$ is well-defined, bounded, and measurable on S_{Γ} .

3. Main Results

Any $\mu \in I(\mathbb{R}^d)$ has the Lévy representation (A, ν, γ) , which means

$$\widehat{\mu}(z) = exp\left[i\langle \gamma, z \rangle - \frac{1}{2}\langle Az, z \rangle + \int_{R^d} G(z, x)\nu(dx)\right],$$

with $G(z,x)=e^{i\langle z,x\rangle}-1-i\langle z,x\rangle(1+|x|^2)^{-1}$. Here $\gamma\in R^d$, A(called the Gaussian covariance of μ) is a symmetric nonnegative-definite operator on R^d , and ν (called the Lévy measure of μ) is a Lévy measure satisfying $\nu(\{0\})=0$ and

$$\int_{\mathbb{R}^d - \{0\}} |x|^2 (1 + |x|^2)^{-1} \nu(dx) < \infty.$$

These A, ν , and γ are uniquely determined by μ . When $\nu = 0$, we call μ a Gaussian distribution. If A = 0, then we call μ a purely non-Gaussian distribution.

The following Theorem 3.1 characterizes the class of all purely non-Gaussian operator *m*-semi-stable distributions. But we do not treat the whole structure of Gaussian operator *m*-semi-stable distributions. The complete description of Gaussian operator stable distributions and Gaussian operator semi-stable distributions is respectively obtained by Sato[7,8] and Choi [2].

Theorem 3. 1 Let μ be a $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi-stable distribution on \mathbb{R}^d with Lévy representation $(0, \nu, \gamma)$. Then, $\mu \in OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q)$ if and only if

 $u(E) = \int_{S_{\Gamma}} \lambda(d\xi) \int_0^{\infty} I_E(u^Q \xi) d\left(-H_{\xi}(u)u^{-1}\right), \quad E \in \mathcal{B}(R^d),$

where

- (i) λ is a finite measure on S_{Γ} ,
- (ii) $H_{\xi}(u)$ is a real-valued function being right-continuous in $u \in (0, \infty)$ and measurable in $\xi \in S_{\Gamma}$ such that $H_{\xi}(u)u^{-1}$ is decreasing (in the wide sense allowing flatness), $H_{\xi}(1) = 1$, $H_{\xi}(bu) = H_{\xi}(u)$ for any u and ξ and in addition, one of the following (a) and (b):
- (a) $(b_1, \dots b_m) \in A_m(0), H_{\xi}(u) = 1,$
- (b) $(b_1, \dots b_m) \in A_m(\rho), H_{\xi}(bu) = H_{\xi}(u).$

Theorem 3. 2 Let μ be as in Theorem 3.1. Then μ is a translation of a strictly $(Q, b_1, \dots, b_m, c_1, \dots, c_m)$ -semi-stable distribution if and only if

$$\int_{S_{\Gamma}} (I - P_j) g_{j,0}(b_1, \cdots b_m, \xi) T_j \xi \lambda(d\xi) = 0 \quad \text{for} \quad j \in J.$$

Theorem 3. 3 Let $OSS(b_1, \dots, b_m, c_1, \dots, c_m, Q) = OSS(b, Q)$ for some b. If $\mu \in OSS_0(b_1, b_2, \dots, b_m, c_1, \dots, c_m, Q)$, then μ is a translation of a strictly (Q, b)-semistable distribution.

References

- [1] G.S. Choi (2001) Characterization of strictly operator semi-stable distributions, J.Korean. Math. Soc., 38, 101-123.
- [2] G.S. Choi (2000) Representation of operator semi-stable distributions, Bull. Korean . Math. Soc., 37, 135-152.

- [3] G.S. Choi (1995) Characterization of some classes of multidimensional distributions related to semi-stable distributions, *Japan. J. Math.*, 21, 335-353.
- [4] P.Lévy (1954) Théorie de l'addition des variables aléatoires, 2^e ed., Gauthier Villars, Paris (1^e ed. 1937).
- [5] Y.Linnik. (1943) Linear forms and statistical criteria (in Russian), Ukrain. Math. Statist. and Pro., 5, 207-243 and 247-290; English translation (1962), Selected Translations in Math. Statist. and Pro., 3, 1-90.
- [6] B.Ramachandran and C.R.Rao (1970) Solution of functional equations arising in some regression problems and a characterizations the Cauchy law, Sankhyā, Ser.A, 32, 1-30.
- [7] K.Sato (1987) Strictly operator-stable distributions, J.Multivar. Anal., 22, 278-295.
- [8] K.Sato and M.Yamazato (1985) Completely operator-selfdecomposable distributions and operator-stable distributions, Nagoya. Math.J., 97, 71-94.
- [9] R.Shimizu (1968) Characteristic function satisfying a functional equation I, Ann. Inst. Statist. Math., 20, 187-209.