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An Analysis of Panel Count Data from Multiple random
processes
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Abstract

An Integer-valued autoregressive integrated (INARI) model is introduced to eliminate
stochastic trend and seasonality from time series of count data. This INARI extends the
previous integer-valued ARMA model. We show that it is stationary and ergodic to establish
asymptotic normality for conditional least squares estimator. Optimal estimating equations
are used to reflect categorical and serial correlations arising from panel count data and vari-
ations arising from three random processes for obtaining observation into estimation. Under
regularity conditions for martingale sequence, we show asymptotic normality for estimators
from the estimating equations. Using cancer mortality data provided by the U.S. National
Center for Health Statistics (NCHS), we apply our results to estimate the probability of cells
classified by 4 causes of death and 6 age groups and to forecast death count of each cell. We
also investigate impact of three random processes on estimation.

Keywords : INARI(p); Non-Stationary Time Series; Three stage; Generalized estimating
equations; Asymptotic Normality.

1 Introduction

The NCHS receives monthly mortality reports from Washington D.C. and the 50 states. These
monthly deaths are classified by the International Classification of Diseases. These classified deaths
are used to estimate classification probability with some interesting covariates and to forecast them.

We present a method to estimate classification probability, to investigate dependency of death
count on covariates, and to forecast death count for each classification, accounting both serial and
cross-sectional correlations.

We assume that observed death counts are obtained through three random stages. The first
stage is a death process denoted by D; for month ¢. In the second stage, we choose §; x 100%
sample from D,. The third stage is to classify the sample deaths according to their cause of death
and demographic factors, giving observed death count denoted by y:; for the ith cause of death
and jth demographic factor.

We estimate the classification probability m;; and forecast classified population death rate Dy;;,
simultancously, using sample y;;; and D;. We apply INARI model for D, to keep consistency in
total, that is, lA?t = Zi’j f)tij where Dt and bt,-]- are forecasted values of D; and Dy;;, respectively.
To reflect categorical and serial correlations, we use optimal estimating equations (Godambe,1985).
Under appropriate regularity conditions, we investigate asymptotic behavior of estimators obtained
by solving the optimal estimating equations.

*YouSung Park is professor, Department of Statistics, Korea University; HeeYoung Kim is Ph.D, Korea Univer-
sity, Korea
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2 Integer-Valued Autoregressive Integrated Processes

In this section, we briefly discuss integer-valued autoregressive process with order p (INAR(p))
(Al-Osh and Alzaid 1987, Alzaid and Al-Osh 1990, Jin-Guan and Yuan 1991, McKenzie 1986,
McCormick and Park 1997, Park and Oh 1997). Let wq; be an iid. sequence of Bernoulli
random variables with Plw,; = 1] = a. Using this wej, INAR(p) is defined as

Xi=aoXiy+apoXi o+ +apoXi p+¢ (1)
where a;0 X;_; = E;{__ﬁ" Wa,j With Plwa,; =1} = a; for i = 1,...,p and for all j, the o-operation

is referred to binomial thinning operator and {¢;} are i.i.d. non-negative integer-valued random
variables with a finite second moment.

This INAR(p) model has the same autocorrelation function as the continuous AR(p) model.
But, unlike continuous AR(p), INAR(p) has positive auto correlations because of positive a;’s.
All marginal models including (1) for count data assume stationarity except McKenzie (1985) and
Brinnds (1995) who include time trend into disturbance term of an INAR(1) model.

To overcome this problem, we introduce a new operator with symbol ® which we call “signed
binomial thinning” operator. Let {wq,,;} be 1.i.d. Bernoulli random variables at time ¢ with
P(wq,t,; = 1) = |a. That is, {wqt,;} are mutually independent when at least one of the subscripts,
a, t, and 7, is different. We call {wq, ;} counting series (Jin-Guan and Yuan 1991). Define
D, = V4VP D, for nonnegative integers d and D, and sgn(z) = 1 if z > 0 and sgn(z) = —1 if
z < 0. Using this notation, we define INARI(p) in Section 2.1, using the signed binomial thinning

|De|
a® Dy = sgn(a)sgn(Ds) Y wa;, (2)
j=1

where the subscript ¢ in wq ¢ ; indicates the observed time of the process D,. To simplify notation,
we drop the subscripts a and ¢ from wg,; ; hereafter.

2.1 Basic Properties of INARI(p) Process

Using the signed binomial thinning operator ®, we now define integer-valued autoregressive process
with order p (INARI(p)) to remove stochastic time trend and seasonality.

P
Di=) 00D i+e, t=0+1,42,... (3)

i=1

where {¢;} is a sequence of 1.1.d. integer-valued random variables with mean y, and variance a2,

0<]|og|<1fori=1,...,p, and all counting scries {wa,¢,;} are mutually independent. The {e;}
are uncorrelated with D,_; for ¢ > 1.

To show that the INARI(p) process uniquely exists and is stationary, we consider the following
process which is similar to that of Jin-Guan and Yuan (1991).

0 n<0
Dn,t = ; € . n=20 (4)
a1 ODp_ 141+ +ap© Dn—p,t—p +e¢ n>0
where Cov(Dn,y, €;:) = 0 when t' < ¢ for any n, and the signs of Dn,t and Dn:‘tz are the same when
t =t for any n and n’. Adopting the same approach uscd in Jin-Guan and Yuan (1991) together
with basic propertics of signed binomial operator, we obtain
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Proposition 2.1. If all roots of the polynomial
N AP~y A —ap, =0 (5)
are inside the unit circle, then Dn,t converges in Lo where Ly = {D, : ED? < oo}

We construct a INARI(p) process from Dn,t satisfying the condition of Proposition 2.1 as
shown below.

Theorem 2.2. Let D; = limn_.oobn,t. Then, the process D, uniquely satisfies
~ p ~
Di=) 00D i+e, t=0£1,%2,... (6)
=1

where Cov(Dy,€;) =0 fort' < t. Furthermore, this process D, is stationary.

2.2 Estimation

Let w(t) be all counting series in oy ® Dy_y +--- + ap ® D,_p By following Jin-Guan and Yuan
(1991), it can be also shown that the process Dt given in Theorem 2.2 is ergodic because {w(t), ;}
are independent sequence. This ergodicity and the stationarity of D; ensure that, by Wang (1982)
and Durrett (1991),

n

—ZDt 2% E(Dy), Z|Dtl =5 E(|Dy),

and - ZDtDt—k 2% E(DyDy-y) for k=0,1,2,--. @)
t=1

Let &; (z =1,2,...,p) be the estimator satisfying
Yo = 81Fk—1+ + &ifr—i + -+ GpFr—p (8)

where 4% = (1/(n — k)) 05 (D, - )(Dt k — D) with % = 4_j. Using &;, define 62 =
(1/1) (6 — )2 + (1/m) Xy 1D4] - Sy 166l(1 — |6s) and & = (1/n) S50,  where & =
Dy — &1 Dy_y — -+ — é&pDy_p. Then, by (7), we have the following result.

Lemma 2.3. Let 0 = Var(e;) and p. = E(e;). Then, &;, 62, and &, are strong consistent
estimators of respective parameters o, 02, and ..

By the definition of signed binomial thinning, E(Dy|Fi_1) = pe + ayDy_y + -+ + ath_p
where F; = 0(Dy, Dy_1,-++). Denote € = (ie, a1, @z, - ,ap). Then, the conditional least squarcs

~LS
estimators (CLS) &,, for £ can be obtained by minimizing

Qn(€) = ) [De— E(Dy|Fo1)). (9)

t=p+1

Under appropriate regularity conditions which are similar to the conditions to be discussed in
Section 3.2 (Klimko and Nelson, 1978), we can show that

VA - € S N(0,V-IWVY) (10)
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where
OE(Dpy1|Fp) OE(Dps1|Fy)
v = [E 2 P P p
[ ( 85, 85] )](p+l)x(p+l) and
N = _ = 23E(Dp+1|~7:p) aE(DP+1I}-P)
W = E[(Dp+l E(Dp11|%5)) 75, 3, ](p+1)x(p+1)'

It is easily seen that (&,€,) in Lemma 2.3 and E,LLS are asymptotically the same. Thus, &; and
€n are /n-consistent for a; and u. by (10). Consequently, it can be shown by (7) and (8) that &2
in Lemma 2.3 is a \/n-consistent estimator of 02. We use 62 in Section 3.

Observe that

p P
Var(De|Fio1) = Var(Y i © Deci + e Feer) = ) leul(1 — |eil)| Do-1| + o2

i=1 i=1

3 Three-Stage Procedures

We assume that the differenced process of death D, (i.c., D;) follows INARI(p) described by (2).
In the second stage, a §;100% samplc of deaths is selected from D, according to a probability
sampling where &; is given for each t. Wec assume that the sample is taken by simple random
sample without replacement.

The third stage is the post-classification of the sampled records. We assume that the clas-
sification by the primary cause ¢ of death and some covariate category j follows a multinomial
distribution. For i = 1,2,---,l and j = 1,---,g, let dyn(4,7) = 1 if the mth file among D,
belongs to the (i, 7)th category and dim (4, j) = O otherwise. Then the conditional distribution of
(P dim(1,1), Zz':l dem(1,2), -+, P8 dim(l, 9 — 1)) given Dy is multinomial with parame-
ters (w11, Te12, -+ Mt l,g—1) in which E” mi; = 1. Because we are interested in the dependency
of probability m;; on some useful covariate, x;, we express myij = Pldim (i,7) = 1|x¢]. Using this
indicator variable dym (4, ) for classification, the observed count in the (4, j)th category is now

di
Ytij = Z dem (3, 7), (11)
m=1
where di(= &; - D;) is the sample size at time .

3.1 Moments

For the relationship among the three random processes, we consider the first two moments of D,
and y;i;. Let F; be a o-field generated by {D¢—y,t' > 0}.
~ Since we assumed that the death process model VPVeD, follows the INARI(p) expressed in

3),

Y4
D ,+ Z a,»VdeDt_i + pe and

i=1

E(Dy|F)

P
Var(DyF,) = Zlail(l—lai|)|VdeDt_i|+U€2 (12)

i=1

where Di_; = Dy — VPVeDy, pe = E(e;), and 02 = Var(e).
Because yy;; is observed through the three random processes, using (12) and variations from
simple random sampling and multinomial classification, we have
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i)
oX,
oY,
o
o

Lemma 3.1. For y,; expressed in (11) which is obtained through the three random processes,

E(yeij|Fe—1) = 8emei; E(Dy| Feo1),
Var(ytijlft_l) = 6t7Ttij(1 - ﬂtij)E(Dt[]:g_l) + J?W?ijVaT(Dtlj:g_l), and
Cov(Yiyjy» Ytigiz| Fem1) = 0Ttiy 5y Teigjz (8:Var (De| Feo1) — E(D4|Fioy)).- (13)

where i7i17i2 = la" . al; j7j11j2 = 1)" ‘g and (il’jl) ?é (i27j2)'

3.2 Optimal Estimating Equations and Asymptotic Normality

In this section, we establish relation between the proportion 7y = (m11, %12, - -, Tag)’ and some
useful covariate x; by regression model, using some link functions. Then we estimate the proportion
by optimal estimating equations and obtain asymptotic normality of estimator.

Using y:;; and F;_1, we cstimate the parameters a = (ai,as,- -, ap)’, e, and o2 for INARI of
D, as well as B; and 7, for classification of y;;. Let 8 = (B, Bi_y s - Myg—1, @', 1c)'. Denote
Vi = (g1, Ye12, - 1 Yug) and Ki(8) = Vi — E(Ye|F;—1). Then optimal estimating functions in
the sense of Godambe (1985) arc defined by

" 9K,(6)

Sn(o’gf) = 50

V,21K.(0) (14)

t=1

where Vi—y = Var():]Fi—1) whose clements are given in (12) and Lemma 3.1. The nuisance
parameter af is included in V;_;.
Let . ,
. alCt(B)V_l 0K.(6) _

Gn(6) = t-1
2+ 50 29

We call G,, the conditional information matrix of $,,(8,02) and H,(8) = E(G) the unconditional
information matrix. By these two information matrices, we assume the following two regularity
conditions. For true 8y and o,

/
(R1) 6’%%90)1/;11 alc(f)gg") almost surely lies in a nonrandom compact subset I' and

(R2) there is a positive definite matrix G such that

le. 26
n

Let 5,, be the solution of
Sn(oa&?) =0 (15)

where 42 is a \/n-consistent estimator for 62 . Namely, we consider (14) replaced o2 by 62. Such
a consistent estimator of af‘o is provided by Lemma 2.3. Because we use all three stages for 5,,,
we call it 3 stage-GEE.
The first-order Taylor expansion of the optimal estimating equations S,(8,,52) is
-~ . 8S.(6%,62) ~

S (0n,62) =0 = S, (60,62) + —"(66—”5)(0" - 6o) (16)
where 6" is an intermediate point between 8, and 6. In addition to (R1) and (R2), we assume
that
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1 0
(R3) -68"2—02&) 0,(1) for any y/n-consistent estimator 2.
(R4) ! 85—(8000’—5)- -2, W where W is a positive definite matrix.
1,88,(6%,52)  9Sn(60,62)
R e) 1 Ye — 1).

The asymptotic normality of 8., is now obtained by

Theorem 3.2. Under (R1) through (R5),

Vi(@n — 80) — N(O,W™1GW™1).

4 Application

During the 116 months from Jan.1980 to Aug.1989, about 4,477,600 deaths of malignant neoplasms
were reported to NCHS. Death records include dcmographlc medical information, and cause of
dcath information. After careful investigation, we realized that monthly deaths reveals a clear
linear time trend as well as a seasonality. Thus, we take D; to be V12V D, to apply INARI(p)
model in which D is the deaths by malignant neoplasms at month ¢. Because INARI(p) process
for D, has the same autocorrelation structure as the usual continuous AR(p) process as scen in
Lemma 2.3. The sample autocorrelation function shows ARMA(1,0)x (1,0)12 process.
When we denote D; = V12V D;, the followings are the CLS given in Section 2.

D, = —-2130D,.1—.2320D,_5 —.3600 D;_3 — 145" © D, _4
—.2090 Dy_¢ — 412® D12 — 32.55" (17

where * indicates non-significant coefficicnts, —32.55 is the cstimate of fi.

NCHS sclects a ten percent sample of total deaths each month, giving an aggregate of 437,767
sample deaths during 116 months from Jan.1980 to Aug.1989. This sample deaths were classified
into 468 categories: 9 types of malignant ncoplasms, 13 age groups, 2 sexcs and 2 races.

To investigate the effect of age on the deaths of the neoplasms, we consider the 2 forms of
models. The first model for the ith cancer

Tuits
log-t;IJ = xy;8; for i=1,23 and j=1,2,---,6 (18)
Tt4|j

where x;; = (1,A1,--+ , 45, POR)', B; = (Boi, B1i, - -+ + 06:)'y and POP; indicates the U.S. popu-
lation (which is divided by 10,000,000) at month ¢.
The second model for the jth age-sex group

log=~ = (1, t)y; for j=1,2,3,4,5 (19)

Tt,6

where 7; = (n0j,m;)’ . We use INARI(12) for V12V D,.
To solve S,(6,52%) = 0 defined in (15), we use Fisher scoring iterations defined by

~(7)
oY _ ™ [Z 5’Ct(9 (g(r) 5 )(ng_))']—lsn(@(r),a—e), (20)
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Table 1: Estimates for two logistic models and INARI(12) under three random processes.

i log :—:llf =X3; i log(mej /me,12) = (1, t)(nog. m1z)’ Dy
RIi=1) DP(x=2) GO{Z=3] | no; | estimate | m; | estimate estimate
. —2.350 1.1206 —1.1%4 —.0243 —.00U543 —.zlo
G O B I B = DA
P NS - N R e I el I DN IS
Tl owm @ Ty |G |G
IR T S Sl I G - Ol
Aq (‘232’ o1 (_.63(%; 705 Coizy | Mms | (ooo2) as (;62{)}
As (021) (o) (.021) s (.079
POP .055 —.05 .016 * —32.10%*
(.015) (.015) (.018) He | (61.22)
Table 2: Three statistics for four estimation methods (N/A: not available)
Kstimates Dy ig Ttij
ME —MAE MAPE | ME __MAE _MAPE [ ME __ MAE MAPE
—Jstage GEE | —476 42379 011 010 66.68 052 | —.0000 .0016  .051
2-stage GEE | —~13.42 419.78  .011 559  53.26  .044 | —.0000 .0013  .043
DBE 1817.8 22366  .056 | 75743 157.10  .123 0000 .0029  .098
CLS 0000  423.88 011 N/A  N/A _N/A N/A __N/A  N/A

For the nuisance parameter o2 involved in S,, we used the conditional least squares estimate
&2 = 336457.5. Using the convergence criterion

G+ _ i)

ma.x] L ] <1073,

i 01(T)
we estimate the 38 parameters after 5 iterations for the two logistic models in (18) and (19) and for
INARI(12) of V12V D;. These estimates arc obtained by considering all three random processes
and thus they are 3-stage GEE. Table 1 shows these 38 estimates and their standard errors in
parentheses. Note that 34 of 38 estimates arc significant (“*” mecans not significant).

NCHS used sample death yy;; for analysis of death until 1995. The estimate of Dy;; was
calculated by 10 x y; after slight adjustment. We call these estimates design based estimate
(DBE).

When population Dy;; is available as NCHS has used it after 1995, sampling stage is no longer
necessary. That is, we now have two-stage processes for obtaining classified deaths and hence need
to consider 2-stage GEE. 2-stage GEE is obtained by letting §; = 1 for all ¢ and replacing yu;;
by Dy;; in defining the score function Sn(6, 62) = 0 given by (15). To compare DBE and 2-stage
GEE, with the 3-stage GEE given in Table 1, we use three statistics which are the mean error
(ME), the mean absolute error (MAE), and the mean absolute percentage error (MAPE).

Table 2 shows 2-stage GEE and 3-stage GEE have almost same performance to estimate (or
forecast) Dy, Dy;j, and 7y; but DBE is much worse than the two estimates.

We assume that D, is a given number to sec the effect of modelling of D; on 2-stage and 3-stage
GEEs. Since no serial correlation exists in this case, the 2-stage and 3-stage GEEs are reduced
to the usual quasi-likelihood estimator (QLE). We call them 2-stage QLE and 3-stage QLE. If we
assume that D, is constant when it is actually random, Table 3 implies that overestimation of
variance is much more serious when sampling stage is involved than when sampling stage is not
involved.

Also, we forecast two months future values of D; and Dy;; for t = Sep. 1989 and Oct. 1989 by
3-stage GEE and 2-stage GEE which obtained 91 months from Feb. 1982 to Aug. 1989. These
forecasted values are also close to their observation for both estimation methods. In fact, it takes
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Table 3: Ratio of variance of GEE to variance of QLE.

R Z-stage 3J-stage Z2-stage 3-stage

=1 i= 1=3]|i=1 i=2 i=3 i=0 1=1]i=0 1=1
Boi 1.00 T1.00  1.00 02 TT01 L.UT Mil T.00 T.00 T.50 T.0T
Bui 1.01 1.01 1.01 3.78 4.58 3.38 | m2 1.00 1.00 1.69 1.01
Bai 1.02 1.02 1.01 6.16 8.27 4.56 | nis 1.00 1.00 2.03 1.00
B3; 1.03 1.04 1.02 7.11 10.50 6.64 | ma 1.00 1.00 2.13 1.00
Bai 1.03 1.05 1.03 7.45 1048  7.63 | mis 1.06 1.04 2.10 91
Bsi 1.17 1.27 1.17 7.52 10.63 7.94
Bei 1.00 1.00 1.00 1.00 1.00 1.00

a few months until mortality reports are classified after NCHS receives the reports. Thus, the
forecasted values by 2-stage GEE may fill this time gap.
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