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ABSTRACT
We propose an improved version of Kim (2000) to the effect that in principle
we may deal with a graphical model of any size. Kim (2000) proposed a method

of estimating parameters for a model of categorical variables which is too large to
handle as a single model. We applied the proposed method to a simulated data of

158 binary variablcs.

Keywords: between-submodel equivalence; d-split; EM; hyper-EM; marginal restructur-
ing; removable nodes

1. Introduction

Kim (2000) expands the range of application of EM into large Bayesian networks of
categorical variables, where the model is too large to handle as a single model. Suppose
a graphical model is d-split (to be defined later) into a set of submodels. If a set of
neighboring submodels share a set S of variables and the estimates for the variables in
S are the same whether they are obtained from one of the neighboring submodels or
another, then we say that between-submodel equivalence (BSE for short) holds at S. The
BSE is not guaranteed in the E-step of the hyper-EM as proposed by Kim (2000), but
it is attained in the M-step. In this paper, we propose a new version of the hyper-EM
so that the BSE may be attained in both of E-step and M-step and under the specific
condition the M-step may become simpler than that of the hyper-EM as derived in Kim
(2000).

2. D-splitting

We denote a graph G by G = (V, E), where V is a set of the nodes involved in G
and E a set of the directed edges or arrows between nodes in V' of the form (7,7). The
directed edge (i,7) stands for the arrow from node i to j. The nodes are labelled in
accordance with the direction of arrows, i.e., the nodes are well-ordered. If a pair of
sets of nodes share a non-empty set of nodes, then we call the pair neighboring sets. If
there is an arrow (a,b), then we will say that node a is a parent of node b. We will be
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Figure 3.1: Three different modes of submodel arrangement. Circles symbolize submodels

denoted by pa(a) the set of the parents of node a and by ch(a) the set of the children.
Let fa(a) = {a} Upa(a). The node which does not have any child node will be called a
terminal node, and the node which does not have any parent node will be called a root
node. A subset is complete if it induces a complete subgraph. A complete subset that is
maximal is called a clique.

Definition 2.1. A chain C from « to § in a directed acyclic graph G is said to be
blocked by S, if it contains a node v € C such that either

(i) v € S and arrows of C' do not meet head to head at -y, or

(ii) v € S, nor has v any descendants in S, and arrows of C' do meet head to head at
~.

We will denote by V the index set of all the variables involved in a model and by V; for
submodel 7, and we will use the lowercase = to denote the cell location of a contingency
table, with z4 and z* for the contingency table of the variables indexed in A and in
V;, respectively. We will denote by ¢ A j the index set of the variables that are involved
in both submodels ¢ and j. If V; and V; are the index sets of the variables involved in
submodels ¢ and j, respectively, then we have i A j = V; N V;.

Definition 2.2. We will say that the graph G of a recursive model is split in the sense of
d-separation if, for any pair of subgraphs, say G1 = (V1, E1) and Go = (Va, Eo), 1\ V2 is
d-separated from Vo \ Vi by Vi NVa. We will call the splitting in the sense of d-separation
d-splitting.

3. Family And Hyper-EM Conditions

After a d-splitting, the whole model can be arranged in the form of submodel-chain.
For instance, in Figure 3.1, the graphs of submodels are linked in series in panel (1),
while they are linked in a ring in the other panels where a circle stands for a set of the
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variables involved in a submodel and the intersection of the two circles is the set of the
variables that are shared by the two submodels. In panel (2) all the submodels share a
set of variables, while there is no such set in any of the panels (1) and (3).

Definition 3.1. Let a node v be in V with graph G = (V, E). If the marginal of V' \ {v}
of the MLE of the joint probability function is the same to the MLE of the marginal of
VA {v}, i.e.,

—

Yo Pl@=( )Y P (3.1)

T Ty} EX (o) T Ty €N
then we will call a node v € V a removable node.

Theorem 3.1. Consider a nodev inV with graph G = (V, E). (i) fa(ch(v)) is a unique
clique which includes a node v or (ii) v is a terminal node where |ch(v)| is the number
of nodes of ch(v) if and only if a node v is removable.

Suppose A C V and |4| > 2. If all the nodes in A can be removed one after another,
we will say that A is sequentially removable. If a pair of submodels of a model shares a
non-empty set of variables, we will call the submodels of the pair neighboring submodels
and call one of them a neighbor submodel of the other.

Definition 3.2. Suppose a recursive model is d-split into k submodels. When G; and G;
are neighbors, we obtain the structure for Vi, V;NV;, and V; in the expression E; UEZAj,
EN (= EfAjUE;Aj), and EjUE;Aj, respectively. We will call this procedure the marginal
restructuring for V; N V; where Ef'\j is the subset of E; confined to V; N'Vj.

Family Condition: Consider the graphs of submodels 1,2,--- ,k of a re-
cursive model. If there is a node v which is in the graphs of m (m < k)
submodels,

gil = (‘/ilyEil)vgig = (Wz)Ei2)7 e 7gi,u = (‘/i,,,yEi,,,),
then pa(v) C V; for some j € {i1,i2, - ,%m }.

Hyper-EM Condition: Consider the graphs of submodels 1,2,--- ,k of
a recursive model. Suppose the marginal restructuring is made on V; NV} for
all i < j. V;\ Vi is sequentially removable where 7 < j. ‘

We can show that the hyper-EM works with submodels d-split under the Hyper-EM
condition.
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4. Proposed Hyper-EM

Consider neighboring submodels ¢ and j of a recursive model d-slit under Hyper-EM
conditon and the marginal restructuring is made on V;NV;. Denote the E-step operation
on submodel 7 by €(z) and the estimate-transfusion from submodel ¢ into submodel j by
T(%,7).

The procedure of submodel E-step and estimate-transfusion(SEET procedure) is de-
scribed below. Once an E-step is implemented within submodel 4, the resulting esti-
mates are transfused into neighboring submodels and the transfusion continues until the
estimate-transfusion takes place into all the submodels except submodel 7. If the sub-
models are arranged as in panel (1) of Figure 3.1 and the SEET procedure begins with
(1), €(2), and €(3), then the SEET procedure proceeds as in

e(1) - 7(1,2) — 7(2,3); (4.1)
either €(2) — 7(2,3) — 7(2,1) or €(2)— 7(2,1) — 7(2,3); (4.2)
€(3) — 7(3,2) — 7(2,1), (4.3)

respectively. In general, when the arrangement is in series mode and the SEET procedure
begins at a submodel 7 which is not located at an end of the submodel-chain, the estimate-
transfusion may be made in any order as long as the transfusion proceeds outward from
submodel i. When k submodels are arranged in a ring, the submodels are symmetric in
terms of location in the whole model. Suppose k submodels are arranged in a ring and
denote by T the index set of the variables that are involved in at least two submodels.
Then each of the k£ submodels is d-separated from the other submodels by T. We will
consider T as a submodel in a ring-mode arrangement. So, if an E-step is done in
submodel i, then the transfusion proceeds into the T' set and then into the submodels
other than submodel 7 from the T set one after another. Re-expressing this process yields

(i) = 74, T) = 7(T,51) = 7(T, j2) — - 7(T, Jx—1)s (4.4)

where ji,--+,jk_1 are a permutation of 1,2,--- ,4 — 1,i + 1,--- k. We do the same
for all the k& submodels one after another. And we repeat the same round of SEET
procedures until convergence takes place. We will call by a full SEET procedure such
processes as (4.1) through (4.4) where the estimate-transfusion is made throughout the
whole model. As a matter of fact we may not do such full SEETs. We will describe this
in detail using the ring-shape arrangement in Figure 3.1. Consider the following SEET
procedures which make up a cycle of IPF and will iterate until convergence:

e(1) - 7(1,T) —» 7(T,2) — 7(T,3) (4.5)
€2) = 7(2,T) - 7(T,3) — 7(T,1) (4.6)
e3) = 7(3,T) = 7(T,1) — 7(T,2) (4.7)

Assuming that a cycle of the IPF runs in the order of the expressions, (4.5), (4.6),
and (4.7), we may skip the three operations, 7(T,3), 7(T, 1), and 7(T,2), at the end of
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Figure 5.1: Mixed model

the three expressions since the submodels are updated only through the T set and so
we may only do 7(7T,%) right before ¢(i). By applying the same argument to a series
mode arrangement, we can reduce the number of operations during a SEET procedure.
For instance, as for panel (1) in Figure 3.1, we may do the SEET and repeat it until
convergence following the sequence of SEET procedures as given in

€(1) — 7(1,2) — €(2) — 7(2,3) - €(3) — 7(3,2) — €(2) — 7(2,1)

instead of the sequence as given in (4.1), (4.2), and (4.3).
The M-step of the proposed hyper-EM is the same as that of the hyper-EM by Kim

(2000).

5. Simulation Experiment

We will consider a simulation experiment about a mixed model. This model combines
with ring-type models as a series. The detailed structure of the model is the same as
Figure 5.1. The model is an large model compared with series-type model and ring-type
model. The total number of variables is 158 and 46 variables of these variables are the
latent variables and the remainder 112 are the observed variables. From Figure 5.1 we
can see that the model is d-split into all 14 submodels with 4 transfusion boxes having
structures. All the variables in transfusion boxes of the model are latent variables. All
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Table 5.1: Goodness-of-fit levels for mixed model.

~Submodel(d.f.)  Tst(2I3)  2nd(212) = 3rd(212) 4th(212)

P 262.5 191.7 257.3 209.1
P-value 0.012 0.838 0.018 0.543
Submodel(d.f.)  5th(212)  6th(212)  7th(212)  8th(212)
x2 238.3 250.1 212.5 227.3
P-value 0.104 0.037 0.477 0.224
Submodel(d.f.)  9th(212) ~10th{214) 11th(214)
b% 239.8 202.5 200.2
P-value 0.093 0.704 0.742
Submodel(d.f.)  12th(212) 13th(214) 14th(214)
X 240.7 218.6 251.9
P-value 0.086 0.400 0.039

Sample size = 100000, Threshold = 1.0.

the variables involved are binary. After d-split, the graph structures of submodels 3, 5, 7,
9, and 12 are modify in parts for marginal restructuring. Edges, (7,11), (13,14), (21,25),
(23,24), and (27,28) in Figure 5.1 are to be added after d-splitting. The goodness-of-fit
results are good for the 14 submodels. Estimation of such a large model as in Figure 5.1
is almost impossible if we deal with it as a single model.
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