Athletic Shoulder II

-Tennis Injury-

박 태 수

TAE-SOO PARK, MD.

한양대학교 구리병원 정형외과학 교실 Department of Orthopaedic Surgery, Kuri Hospital Hanyang University College of Medicine, Kuri-City, Korea

- ♦ Tennis: basic strokes
 - · serve (overhead) / forehand drive / backhand stroke
- Serve: wind-up
 - begins w/ standing w/ shoulders in line w/ intended direction of serve ends w/ ball release from left hand
 - · risk of injury is low
- Serve : cocking(=preparatory phase)
 - · -- sequence of extension, E/R & abduction
 - -- posterior deltoid activity is reduced by a prominent backward lean of trunk → greater use of anterior Deltoid during abduction phase of cocking
 - · -- related to mechanisms involving power generation
 - -- end-range eccentric contractions of internal rotators & horizontal adductors
 - · -- contractile injuries from eccentnic overload : Subscapularis, Latissimus dorsi, Pect major → static joint instability
 - · -- common compensation for ↓ in strength
 - ± ROM at shoulder girdle→↑ amount of elbow flexion
 - · -- Triceps brachii: compensate for loss of power at shoulder
 - · -- high valgus force on medial elbow
 - · stretch-shortening cycle
 - -- short bursts of end-range eccentric muscular contractions
 - → followed quickly by full-range concentric contractions
- ♦ Serve: acceleration
 - · athletes, release of power

- · begins w/ I/R of right arm
- · ends at ball contact w/ racquet
- → powerful concentric contractions of
 - --internal rotators & horizontal adductors of GHJ
 - --concentric contractions of elbow extensors & wrist flexors
 - ⇒ propel ball forward
- · protecting joints: Biceps brachii & Rhomboids (working eccentrically)
- · insufficient endurance of slow twitch stabilizing muscle → static stabilizers tend to elongate & stretch

♦ Serve : follow-through

- · begins w/ ball contact & continuces until completion of stroke
- · eccentric predominant muscle activity, occuring in U/ & L/E & trunk→ absorption of energy & deceleration
- · strong posterior Deltoid, Infraspinatus & anterior Deltoid activity
- · reduced participation of Pect major
- · structures in posterior joint region: the most commonly affected
- → posterior RC & bicipital tendonitis from eccentric overload
- tightened posterior joint capsule \rightarrow ↑ anterior & superior translation of HH on glenoid labrum during late cocking & acceleration stages : leading to 2° static joint instability & impingement SD

♦ Serve: elbow & forearm

- · flexing to around 120° in cocking
- · extending to around 15-20° at ball impact
- · extension velocity: 900° per sec
- · acceleration & deceleration of elbow
- · forearm pronation

♦ Forehand drive : cocking

- · backward stroke of shoulder extension & moderate abduction
- · main Deltoid activity (posterior & middle heads)

♦ Forehand drive: acceleration

- · rapid flexion (0.14 seconds)
- · anterior & middle Deltoid, Peck major, Biceps & Triceps brachii (elbow stabilizer)

♦ Forehand drive : follow-through

· deceleration

inconsistent participation by Latissimus dorsi suggests deliberate I/R is meeded for ball spin & additional deceleration.

Ground strokes : elbow

not have much motion elbow flexor & extensor muscle load absorption

♦ Power game : style

- · full western grip: more extreme positions of the racquet in the hand
- · limitation of shoulder motion in favor of an "open" stance & "windshield wiper" stroke
- -- more velocity of the ball
 - -- extra stress on the elbow & forearm
- · the latest generation of racquets
 - -- top spin
 - -- large motions on wind-up & follow through
 - -- swinging hard on all shots
 - -- playing offensively

Racquet

- · head size: midsize or large size
 - -- create larger maximal hitting zones
- · large racquet head
- · grip size: from tip of 3rd finger to distal palmar crease
- -- too small: muscle fatigue from overuse
- -- too big: less feel for & control over racquet
- -- minimal effect on EMG activity

string tension: debate

-- slightly looser strings produce more velocity in the ball

Shoes

- · sole cushioning systems
- · lacing pattern
 - -- shock absorption functions: not high
 - -- foot control: better maintained by flexible joints & muscular strength in legs

♠ Court surface :

clay courts	synthetic & hard courts
ball: slow down	speed up
longer matches: more strokes	shorter points
extra strain on arm & back	more impact forces on legs racquet & arm
extra running: more demands on legs	increased stress on legs

♦ Loads on anterior glenoid in throwing motion : 2 times BW

Peak velocity in serve

· tennis racquet : 62-72 miles/hour

· ball: 83-125 miles/hour

· shoulder: I/R at 1140-1715°/sec

♦ Velocity in ground strokes

in forehand: 52-56 miles/hour (ball: 80-85)
in backhand: 40-47 miles/hour (ball: 65-70)

stroke	rotational velocity & (°/second)	hand speeds at ball impact 숙 (miles/hr)	muscle activation (EMG analisis)
serve	1500	47	Subscapularis
forehand	387	37	Pect major
			Serratus anterior
backhand	895	33	middle Deltoid
			Supraspinatus
			Infraspinatus

\$\precep\$ world-class tennis players

- ♠ These motions & forces are generated & controlled by coordinated muscle contraction. At the shoulder, the forces are the summation at the kinetic chain activity that starts w/ the ground reaction force in the legs & proceeds to the shoulder.
- ♦ At the shoulder, the forces are transmitted through a graded coordinated muscular firing pattern to the arm & then to the racquet.
- ♦ Muscular firing pattern : shoulder
 - · early scapular stabilization

- · early acromial elevation
- · rotator cuff firing
- · anterior force generation
- · posterior force regulation in follow through
- ◆ The elbow, forearm & wrist must absorb most of the rotational torque transmitted from an off-center hit.
- Athletic fitness demands
 - · speed / power / quickness
 - →accomplished through weight training, sprint/interval running, foot work, foot speed drills, plyometrics

Musculoskeletal base

- if the musculoskeletal base is inadequate for the sports, overload injury, fatigue & decreased performance may well be the results.
- · strength, flexibility, muscle balance & endurance
- Sound stretching programs, the appropriate use of weight training & isokinetic training can reduce the risk of overuse injury & potentially improve performance.

chronic injuries (63%)	acute injuries (37%)	
rotator cuff(RC) tendoniti		
lateral epicondylitis	ankle sprain	e
chronic muscle strain	torn menisci	
plantar fasciitis	Fx	
stress Fx		

Possible mechanisms of injury

- · trauma
- · overloading, overuse, muscle imbalance in shoulder girdle joints or muscles & proximal or distal to shoulder
- · poor throwing technique
- · compensatory changes in throwing technique.

Throwing athletes

- ↑E/R, ↓I/R in abduction→↑in anterior capsular laxity
- → ↑ translation of HH within glenoid fossa→ ↓ in static stability by capsule lead to ↑ reliance on RC musculature as a mean of providing GH stability
- → dynamic stability provided by RC is prone to fatigue
- → lead to abnormal mechanics & ↑ potential for injury

- ◆Tennis player ROM: dominant arm
 - · ER: increase or same
 - · IR: loss→ posterior capsule or RC tightness
 - Ellenbecker et al -
 - Kibler et al -
 - · Posterior capsule tightness could result in increased anterior translation.

 Harryman et al -

♦Tennis Injuries of the shoulder

overuse
muscular fatigue
injury to static shoulder stabilizers

instability

instability

plastic deformation of static stabilizers

RC tear

Common shoulder injuries

- · impingement SD: RC tendonitis / tear / bursitis
- · instability / labral tears /
- \cdot internal impingement syndrome bicipital tenosynovitis / S/L of long head of biceps tendon /
 - · thoracic outlet syndrome / os acromiale / winging scapula

♦Management

· early evaluation / stabilization / protection / early treatment

Rotator cuff (RC) tendonitis & tear

- · one of the most common injury
- · older athlete
- · caused by damage directly to RC
- · condition is usually functionally disabling
- · conservative Tx
- -- decreased activity
- -- ROM exercises
- -- gradual muscle strengthening exercises
- even w/ early surgery, results are often disappointing, especially in the large tears.
- · a good chance of returning to previous level of play: 19/23(83%)

- Bigliani et al -

Am J Sports Med, 1992

♦Instability of GHJ

- · athlete under 35 years of age
 - -- result of deficits in muscular strength & balance of muscular inflexibility predispose to capsular & labral deficiencies
- · subclinical adaptation
- -- short arming the throw
- -- alteration of arm position during throwing or lifting
- -- muscle recruitment from anterior shoulder, forearm or trunk
- · treatment is limited by anatomic instability

Internal impingement of RC

initial pain during late cocking & early acceleration phase of serving RC tear located on articular surface of posterior supraspinatus &/or anterior infraspinatus & pathologic changes of posterosuperior glenoid labrum

Lateral epicondylitis

- · a result of repetitive overload
- pathologic change in extensor tendon attachments around lateral epicondyle in ECRB)
- · Sx: pain on resisted finger or wrist extension resisted forearm supination gripping objects backhand stroke
- double-handed backhand:
 more injury to extensor origin than to use of single handed backhand

- Gerber, Krushell -

- Jobe et al -

- subclinical adaptations: hitting "behind the body", hitting w/ wrist movement, recruitment of triceps or alteration of position of elbow
- · Tx: conservative Tx
 - -- decreasing activities to reduce stress / antiinflammatory medications
 - -- strengthening exercises: rubber tuning
 - -- counter force brace / local steroid injection

surgery: -- do not respond conservative Tx for 6-8 weeks

-- return to play average 3 months

♦ Medial epicondylitis (=medial tennis elbow)

- · more commonly seen in advanced & competitive players
- · pathology: repetitive tensile microtears
- · pain: felt more on forehand stroke or serve
- · mechanical factors:
 - -- excessive racquet velocity
 - -- exaggerated racquet position
 - -- desire to create heavy top spin
- · tissue injury: valgus overload complex
 - -- forearm flexor mass, biceps & pronator
 - -- ±UCL
 - -- ulnar nerve
 - -- ±posterior medial olecranon
- · subclinical adaptations
 - -- hitting "behind the body"
 - -- more overhead throwing motion
 - -- more wrist snap
 - -- more use of shoulder in throwing motion
- · D/D: UCL inscufficiency / ulnar neuropathy
- · Tx: conservative Tx

surgery

- -- excision of all degenerative tendon tissue
- -- fasciotomy & debridement of damaged muscle
 - -- side-to-side or tendon-to-bone repair

Stress fractures

ulnar: non dominant arm two-handed backhand humerus / index metacarpal / distal radius / acromion

Nerve entrapment about elbow

ulnar N / radial N (high radial N) / posterior interosseous N / median N / long thoracic N