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A New Model of a Routing and Wavelength Assignment Problem
on WDM Ring Networks
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Abstract

We consider a routing and wavelength assignment (RWA) problem on wavelength division
multiplexing (WDM) ring networks, which is to maximize the established connections between
nodes, given a set of usable wavelengths. We propose two new mathematical formulations of it
and efficient algorithms based on branch-and-price method. Computational experiments on random
instances show that one of the proposed formulations yields optimal solutions in much shorter time
on the average than the previous formulation due to Lee (1998).

P

L. Introduction
The optical transport network based on the
optical path (or lightpath) concept, which
employs  wavelength  division  multiplexing
{WDM) technologies and the wavelength routing
techrologies, is the key approach to realize
large bandwidth networks (Lee er al, 2000,
Nagatsu et al, 1999). We focus on WDM ring
networks {Lee et al, 2000) in this paper.
Routing and Wavelength (RWA) problem in
WDM networks is to construct optical paths
between pairs of nodes and to assign a
wavelength to each optical path with a certain
objective. The problem has been a key issue for
years in WDM network design (Lee er al,
2000, Wauttisittikulkij er al, 2000). There are

two versions of RWA problem commonly
appear in the literature (Lee, 1998 and the
references therein). The first is to get the

maximum number of connections that can be
established, given a set of usable wavelengths
for a network is given. Another problem is to
establish all connections between nodes while
minimizing the number of used wavelengths.
Hereafter, we denote the problems by (RWAI1)
and (RWA2), respectively.

Recently, Lee et al. (2000) solved (RWA2)
successfully in ring networks using a
branch-and-price algorithm (Bamnhart et al,
1998). (RWAI1) with the formulation due to Lee
(1998) can be solved with the same approach.
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Though LP relaxation of the formulation
provides tight upper bounds on the optimal
values,  there are wide  variations in

implementation time depending on the number
of usable wavelengths in a ring. In this
research, we suggest two new formulations of
(RWATI), and compare the performance of the
branch-and-price  algorithms for all  three
formulations.

In the wavelength routing, no two optical
paths can be assigned the same wavelength in a
link (Lee et al, 2000). We assume that
wavelength conversion is not allowed; hence,
one wavelength is assigned to each path for a
connection.

2. Models of RWA problem

2.1 Traditional formulations

Lee (1998) presented formulations of (RWATL)
and (RWA2) based on decomposition and
column generation, using the notion of
independent routing configuration.

Let K be the set of node pairs such that
for each k=K, the number of required
connections d, is given. We denote the number
of usable wavelengths (we also call this the ring
capacity) by &. A routing configuration is a set
of paths given for some node pairs in K. Note
that, there are two kinds of paths between two
nodes of a node pair since the physical network
is a cycle. Routing configuration ¢ can be
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represented as a nonnegative
Ye=(¥Yu,% ...  qr)» Where
the number of paths
configuration ¢ which are used for the
connections of node pair k=K. Routing
configuration ¢ is called independent if all the
optical paths in ¢ can be established using only
one wavelength. For an independent routing
configuration ¢, 7. is 2e, or composed of Os
or 1s due to the constraint that no two optical
paths are assigned the same wavelength in a
link, where ¢, is kth unit vector of size |K].

integer vector
¥ represents

appearing in routing

Let C be a set of all independent routing
configurations. Decision variables z,ceC are
introduced to represent the number of routing
configuration ¢ in the final solution. Then, the
mathematical formulations for the two problems
can be stated as follows (Lee, 1998).

RWA1)
max egc Z‘,krckzc
s.t.

2yrazcS<dy keK

chzcsb

zEeZ,, c=C
(RWA2)
min Zczc

-

S.t

L;chrckzczdkv kEK (])

2.€Zy, ceC
For details of the formulations, please refer to
Lee (1998).

(RWA2) on WDM ring networks was
proved to be NP-hard (Erlebach and Jansen,
1997). (RWA1) can be shown to be NP-hard by
polynomial reduction from (RWA2) based on the
next property.

Property 1. (RWAI1) has a solution of value
2 rexd, if and only if (RWA2) has a solution

of velue less than or equal to 4.
n the branch-and-price algorithm for
(RWA2) (Lee et al, 2000), the subproblem
(column generation problem) can be solved in
polynomial time using the algorithm for
obtaining maximum weight independent set
(MWIS) on interval graphs (Hsiao et al., 1992)
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as a subroutine. They applied the branching rule
based on variable dichotomy with a procedure
of finding wnth best solution in case that an
existing column is generated again after
branching. Two kinds of primal heuristics were
implemented to get feasible solutions. The first,
denoted by PHI, is a greedy-style heuristic to
get a set of independent routing configurations
by implementing MWIS algorithms iteratively,
until all connection requirements are covered.
The final solution is added to the formulation as
initial columns. The second, denoted by PH2, is
applied at each node of the branch-and-bound
First, they  determine  that | z, ]

configurations are always selected for c=C, and
then they apply PH1 to the rest of connection
requirements, where z is an LP optimal
solution at the node. As a result, they found
optimal or near-optimal solutions in a reasonable
time.

Note that (RWAI1) can also be solved using
branch and price. We can solve the subproblems
in polynomial time using MWIS algorithm. We
can also apply PH1 and PH2 to find feasible
solutions. We can adopt the same branching rule
as that used in the algorithm for (RWA2).

tree.

2.2 New formulations of (RWAI1)

We note that there is still difficulty in solving
(RWALI). Depending on the value of b, it takes
several hundreds seconds to solve the problem
(it will be shown in section 3). In order to
tackle the problem, we consider two alternative
optimization problems, (RWA1-1) and RWA1-2),
that provide an optimal solution to (RWAI).
They are closely related and the second one is
induced by the first. Both problems can be
solved using branch and price as (RWAI1) or
(RWA2). With the latter one, we could obtain
optimal solutions to (RWAI1) for all test
problems by solving LP relaxation and applying
branch-and-bound algorithm. In other words, we
may solve the problems with only the columns
generated at the root node of the
branch-and-bound tree. This method considerably
outperforms the branch-and-price algorithm for
(RWA1) in terms of computing time.

We introduce decision variables u,, A=K
representing  the amount of  unsatisfied
connections of node pair k& Then the first
problem can be formulated as follows.

(RWAI1-1)

min z; Uy
=

@
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?;anzc‘i" up2d,, k=K
E z2.<b
celC

z2&eZy, ceC, uyesR, kK
The objective (2) is to minimize the sum of
unsatisfied connections.

We show that the formulation of (RWAI-1)
is valid in the following proposition.

Proposition 1. (RWA1) has an optimal solution
of value @, if and only if (RWAI-1) has an
optimal  solution of wvalue 3 ,cxdi—a;.
Furthermore, the optimal solution to (RWAI1)
can be transformed into that to (RWAI1-1) in
O(B|K]) time, and vice versa, where
B=min(b,2 ,d}).

Now, we consider another problem referred
to as (RWAI1-2). The formulation of it has the
same constraints as those of (RWAI1-1), but the
objective is replaced by

min g(u,z)= g_;(Muk— cgb Z‘krc"’z“

where C'CC and M is a sufficiently large
number. Note that 0<2 .o ka2 .<BK|
If we are given two feasible solutions (z!,z!)
and  («%,2) to (RWAI-1) such that
> hektr= 20 pextts, then |g(u?, 2% —g(u!, 2|
<BK].

Proposition 2. An optimal solution to
(RWA1-2) is also optimal for (RWAI1-1) when

M> BK].

Suppose we have a feasible solution to
(RWAI1-1) or (RWAI1-2). Let f,,g, be the
objective values of (RWAI-1) and (RWAI-2),
respectively, provided by the solution. Then, we
can write g,= Mf,— a where (0<e<BK].

2.3 Pruning test in implementing branch and
priee

Since the objective value of (RWAI1) or
(RWAI1-1) is integer, we can prune the
branch-and-bound tree at a node if difference
between LP value and a value of a feasible
solution is less than 1. For (RWAI1-2), the
threshold value is determined based on the next
proposition.
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Proposition 3. Let g, and g, be objective

values of LP optimal solution and a known
feasible solution to (RWAI1-2), respectively. If
g.— g X M(1—¢), where M>2BK] and
BK|/M<e<{1, we can prune the tree at the
current node.

2.4 Determining C’ in solving (RWA1-2)

The aim of introducing additional term
— > o2 ek a?. in the objective function
of (RWAI1-2) formulation is mainly to enlarge
the left-hand sides of constraints (3) enough to
accomplish the optimality of (RWA1) early
(possibly, at the root node of the
branch-and-bount tree). As will be seen in the
next section, the upper bound provided by the
LP relaxation of (RWAI1) is very close to the
optimal value, but the lower bound provided by
the branch-and-bound method run at the root
node is apart from it a little depending on the
values of b Introducing the term helps reduce
the gap between lower and upper bounds. If
|C’| is too small, we may not expect the effect
much. On the other hand, if C is set to be
close to C, the effect becomes significant but
more columns than necessary would be
generated. One possible way is to set C as the
columns due to PHI. With the C’, we could
terminate the algorithm at the root node for all
test problems in a short time.

3. Test results

To compare performance of the branch-and-price
algorithms for the three problems, we consider
25 test problems with |V|=13 and |K|=78.
The connection requirement of each node pair
varies randomly from 1 to 5. We generate five
sets of connection requirements, and for each
set, we consider five ring capacities (b):
[07?4)0] ,wo—l,wo,wo+1, L131A)0J . where
w, is the optimal value of (RWA2) with the

instance of the set of connection requirements.
Note that when b>w, an optimal solution to
(RWA1) D arc.=dp kK  (see
Property 1). The tests were run on Pentium III
PC with speed of 866MHz.

Table 1, Table 2 and Table 3 show the
results of branch-and-price  algorithms for
(RWA1), (RWA1-1), and (RWAT1-2),
respectively. Columns 'IP' and 'LP' refer to the
optimal values of the problem and LP
relaxation, respectively. Entries of the column

satisfies
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Tabie I. Results of branch-and-price algorithm
for (RWATL)

Table 2. Results
algorithm for (RWAI-1)

of  branch-and-price

B&B

B&B

NO' are obtained by implementing branch and
bound with the columns generated at the root
node of the tree. The objective values of
(RWA1-1) and (RWA1-2) were converted into
the corresponding ones of (RWAI1) in Table 2
and Table 3. Note that there are no columns
'LP' in the tables, since the corresponding LP
values are unknown. We used callable library of
ILCG CPLEX 7.0 as LP and MIP solvers.

As shown in Table 1, the problems can be
solved in a short time in the case of b= w)+1
[1.3wy!. In the remaining cases, it takes
generally much time to obtain optimal solutions.
The results of Table 2 also show this tendency,
but the average time decreases significantly. In
the algorithm for (RWATL), without PH2, only
one problem yielded an optimal solution with
the branch-and-bound node limit of 10000; there
are numerous nodes with the same LP value
though the symmetric structure resulting from
the indexing of wavelengths has been destroyed
by adopting the model of (RWAI1) (Lee, 1998,
Lee et al, 2000), and this causes too many
nodes to be explored.

The values of M, are set to 10° and 0.1,
respectively in solving (RWAI1-2), which comply
with the possible ranges of A/ and e given in

or

No, b 1P LP NO nodes columns | time(s) No, b 1P NO nodes columns time(s)
1] 51 200 200| 199 253 315 290.8 1] 51 200f 199 309 285 318.3
71 240 240| 237 4692| 364 4163.5 71 240 239 191 260 152.3

72 241 241 238 214 297 213.3 72 241 241 0 234 5.5

73 241 241 ] 240 2 257 8.5 73 241} 241 0 221 3.2

93 241 241} 241 0 208 2.4 93 241| 241 0 208 2.3

2| 47 187 187.5] 186 213 304 210,9 2| 47 187| 187 0 228 5.9
65 225 225| 223 19 290 35.1 65 225| 224 146 276 114.9

66 226 226| 224 89 311 114.3 66 226 225 57 264 45.1

67 226 226 225 36 286 57.0 67 226| 224 22 247 21.8

85 226 226 226 0 203 2.0 85 226| 226 0 203 2.0

3] 46 170 170| 168 23 253 22.4 3| 46 170| 169 13 218 10.3

64 206 206| 204 73 256 51.0 64 206| 206 0 223 3.9

65 208 208| 206 8 252 10.7 65 208 207 7 230 7.5

66 208 208) 208 0 204 2.1 66 208 208 203 2.1

84 208 208 | 208 0 203 2.0 84 208{ 208 0 203 2.0

4| 48 198 198] 195 77 274 92.6 4 | 48 198 197 10 229 14.7
67 236 236 234 10 261 17.2 67 236| 235 59 243 52.5

68 238 238} 237 26 272 36.1 68 238 237 5 232 12.3

69 238 238 237 3 240 8.9 69 2381 237 4 221 6.3

88 238 2381 238 0 203 2.2 88 238| 238 0 203 2.2

51{ 49 185 185] 182 37 277 38.7 5| 49 185] 184 5 232 9.8
69 225 225} 223 148 290 122.2 69 225 224 35 242 32.1

70 226 226| 223 2 267 10.6 70 226 224 19 235 19.6

71 226 226| 224 13 254 14.8 71 226 226 0 219 3.7

91 226 226 226 0 203 2.1 91 226] 226 0 203 2.0

221.3 34, 1(Avg.)
(Avg. )
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Proposition 3. (RWAI1-2) requires more time

than (RWA1) or (RWAI-1) does when
b= 11.3wy !, but it gives the shortest time on
the average. By adopting the model of

(RWA1-2), all test problems were solved at the
root node of the tree. The average elapsed times
for the three problems (RWA1), (RWAI1-1) and
(RWA1-2) were 221.3, 341 and 7.7,
respectively.

4. Conclusions

We suggested and tested a new formulation
of a RWA problem on WDM all-optical
networks that gives optimal solutions in a short
time. Though we have tested the formulation in
ring networks, it can also apply to RWA
problem on mesh networks.
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