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Abstract

we propose a k-nearest neighbors(k-NN) based pattern selection method. The method tries to select the patterns
that are near the decision boundary and that are correctly labeled. The simulations over synthetic data sets
showed promising results: (1) By converting a non-separable problem to a separable one, the search for an
optimal error tolerance parameter became unnecessary. (2) SVM training time decreased by two orders of
magnitude without any loss of accuracy. (3) The redundant SVs were substantially reduced.

1 Introduction

The support vector machine(SVM) methodology
introduced in [2], is receiving increasing attention in
recent years due to its clear-cut theory and practical
performance [3][8]. When M training patterns
(x;9), =1, M x,€R" y;={—1, 1} are given
and the classes are linearly separable, SVM finds the
decision boundary ¢ w, x;>+ b=0 that separates the

two classes by the largest margin: Find weR”, b=R

by optimizing following quadratic programming
problem.

min. O w) =1l wl?

s- bty (K w, x>+ 8)=1 N

i=1,, M

But, when the two classes are not linearly separable,
the constraints in Eq. (1) can not be satisfied. To get
over this difficulty, nonnegative slack variable £ are
introduced in the constraints and a penalty term is
added to the objective function as in Eq. (2).

min. 6 w, §)=7 Il wll *+C3¢,

Sty Kw, x>+ bH)21-¢
=1, M.
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In SVM, nonlinear decision boundary can be built
through implicit projection onto kernel(feature) space.
Commonly used kernel functions are shown in Eq.
(3): RBF, polynomial, tansig.

JTY
KRBF( X, x’) = exp(‘”‘xz_szx‘u—)
Ko ( x, ') =( %, " >+1)* 3)
K ransic =(plx, 2>+
And SVM decision function is Eq. (4).
f(x)=sign( i;“vsa‘ - K(x;, x)) Y]

where /s are the Lagrange multipliers in dual
formulation of Eq. (2). The idea of SVM is simple
and easily understandable compared to other machine
learning algorithms such as neural networks, decision
tree, etc. Besides empirical results in many real world
situations show that SVMs practically perform better.

However, difficulty arises when a large set of
training patterns is given. The time and memory
requirements to solve the quadratic programming
increase almost exponentially since the number of
training patterns equals to the number of constraints
in Eq. (2). Given that "critical" patterns in SVMs are
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only a few near the decision boundary, most patterns
except them could be considered of no use or even
harmful.

One way to circumvent this difficulty is to select
only the critical patterns. There have been various
methods reported in the literature. In [4], the
Mahalanobis distance was used between class core
and each pattern to find the boundary patterns. In
[6], they implement RBF classifiers, somewhat like
SVMs, by selecting patterns near the decision
boundary. They propose I-nearest neighbor method in
opposite class after class-wise clustering. But this
method presumes that the training set should be
clean. In [7], the clean patterns near the decision
boundary are selected based on the bias and variance
of outputs of a network ensemble. This approach is
successful in selecting intended and relevant patterns,
though it requires additional time for training a
network ensemble. A pattern selection approach,
specifically designed for SVMs, is proposed in [1].
They conduct k-means clustering on the entire
training set first. Then only the centroids are selected
for a homogeneous composition(same class label)
while all patterns are selected for a mixed
composition. Their approach seems to be successful
but a difficulty still remains: how to determine %, the
number of clusters.

In this paper, we propose a k-nearest neighbors (k
-NN) based method. The idea is to select those patter
ns with a correct class label near the decision bounda
ry. It is simple and computationally efficient. These a
re pertinent properties as a preprocessor.

In section 2, the proposed method is introduced
with its motives and algorithm in detail. In section 3,
simulations over synthetic data sets are shown. In
section 4, a conclusion as well as a future research

work is given.

2 Pattern Selection Algorithm

The proposed method tries to select the patterns that
are located near the boundary and are correctly
labeled. In order to do that, two quantitative measures
are introduced, "proximity" and "correctness".

First, we introduce proximity. A pattern near the
decision boundary tends to have neighbors with
mixed class labels. Thus, the entropy of k-nearest
neighbors' class labels can estimate the proximity. We
select those patterns with "positive" proximity values.

Among them, we want to choose only those with
a correct class label. We define correctness as k-NN's
voting probability to the pattern's correct class label.

We select only those patterns whose correctness is
larger than a threshold, set to 1/J (J is the number of
classes) in our experiments.

The effect is as follows: among those patterns
near the boundary, the pattern whose class label is
same as its neighbors' major class label is regarded
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as a correct pattern near the decision boundary. On
the other hand, the pattern whose class label
disagrees with its neighbors' major class label is
discarded. Fig. 1 shows the conceptual procedure of
the proposed approach. By proximity, patterns near
the decision boundary are first selected (a—b). Then
by correctness only the clean patterns are selected
among them (b—-c). Fig. 2 presents the algorithm.

[Fig. 1] Conceptual procedure to select the "clean"
patterns near the decision boundary.

@ Find the [ nearest neighbors for pattern x.

@ For yx, calculate the voting probabilities of k
nearest neighbors over J classes.
k
;1 if F(x=j)
% ,
1,7,

Pi( x)=
i:l,...’ k, j

where F(x) is the label of the ith nearest
neighbors  of x, F{-)e{l,,}- Fy( x)
defined as the label of x itself.

@ Calculate x's proximity to the decision
boundary.

is

.. I 1
roximit, = ; .
p ity ( x) ;Pl(x)logm Pyx)

In all calculations, (log( is defined to be ().

@ Calculate x's correctness.
correctness ( x )= P;( x) where ['=Fy(x).

® Apply O~@® 10 all x, in the training set.

® Select the patterns satisfying
conditions.

the following

proximity( * )>0 and correctness( * )> ~}~

[Fig. 2] Pattern selection algorithm.
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One example on 3-class classification when j=3,
M=4, k=6 is depicted in Fig. 3. In the example g,
x; and x, patterns are selected.

Jr FiFaFsFaFsFe

. 4f6 07897
6/6 | 0/6 | 0/6 6/6 9
216 2/6 | 216 206 1
16 | 26 36 i3 0.9227

[Fig. 3] Example on the proposed algorithm.

3 Results

The proposed method was tested on two artificial
binary classification problems. All simulations were
performed on a PENTIUM PC using the Gunn's
SVM MATLAB code [5].

The first problem is a continuous XOR problem.
From the four gaussian distributions, a total of 600
training patterns were generated. Because of an
overlap between the distributions, there are about
10% innate noise patterns, i.e., having an incorrect
class label near the decision boundary.

PROBLEM (A):

class(1) = {(x;, %) | M(C, 0.5%D)
where C=(1,1)or(—1,—1)},

class(2) = {(x; x,) | N(C, 0.5%D
where C=(—1,1) or(1,—1)}-

In the second problem, patterns were generated
from the two-dimensional uniform distribution, and
then class labels were determined by a decision
function. In this problem, four different gaussian
noises were added on purpose along the decision
boundary, ie., MN(a, bz) where 4 = point on the
decision boundary and gaussian  width
parameter(0.1, 0.3, 0.8, 1.0). Among 500 training
patterns, 20% were incorrectly labeled. Fig. 4 shows
both problems after normalization ranged from -1 to
1: Normalization is essential for the better
performance of finding the nearest neighbors and of
adapting to SVM kernels.

PROBLEM (B):

class(1) = {(x, x;) | x> sin (3x; +0.8)?%},
class(2) = {(x) x,) | x,< sin(3x,+0.8)%},
where 0<x,<]1 and —2.5<x,<2.5.

Notice that in both problems classes cannot be easily
separated. And PROBLEM(A) has a sparser density
of patterns near the decision boundary than
PROBLEM(B).
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(a) PROBLEM(A)

(b) PROBLEM(B)
[Fig. 4] Two artificial problems.

The value of k& was empirically set as 6 for
PROBLEM(A) and 9 for PROBLEM(B). Some other
values of & were tried, but such trials did not affect
significantly to the SVM performance.

Fig. 5 illustrates the relationship between the
proposed "proximity" and the distance from the
decision boundary. The patterns near the decision
boundary were assigned higher proximity values than
the remote ones. It means that proximity offers an
appropriate measure for finding the nearby patterns to

the decision boundary. Among the patterns with
non-zero  proximity value, noise patterns were
discarded by means of "correctness”.

Proximity | | H i v '

3 deemme e R b R S R
D,Bf--; --------- g R L e L L PETTTTR
D.Ge' R R Fomemmmb oo -- - : ------- A---m--

: :
5! 6! ]
log{(Di 1000 +1)

(a) PROBLEM(A)
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[Fig. 5] Proximity and the distance from the
decision boundary.

In Fig. 6, the selected patterns shown in white
contours are scattered against original ones. From
both plots, the proposed method seems to extract
relevant patterns from redundant ones for SVMs.
Only  56(9.3%) patterns  were  selected for
PROBLEM(A) and 109(21.8%) for PROBLEM(B).
The difference in reduction ratio is due to the
differsnce in densities near the decision boundary.

(b} PROBLEM(B)

[Fig. 6] Selected patterns against the original ones.
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Table 1 and 2 show SVM adaptation results of
CASE(A) and CASE(B), respectively. The upper
block of each table is the result for all patterns and
the lower block is for the selected patterns. For each
problem, 300 test patterns were generated from a
statistically identical distribution to its training set.
Five RBF kemnels with different width parameters(s =
0.25, 0.5, 1, 2, 3) and five polynomial kernels with
different order parameters(p = 1, 2, 3, 4, 5) were
adopted. For SVMs trained with all patterns, various
values were tried for the tolerance parameter (C=0.1,
1, 5, 10, 20, 100, 1000, o0), since the problem under
consideration are non-separable. Whereas for SVMs
trained with the selected subset of patterns, C was
fixed with oo since the proposed selection method
removed "incorrectly labeled"” patterns  through
converting a non-separable problem into a separable
one.

Performance was compared in terms of the
number of support vectors, the execution time and
the accuracy(test error). First, The average number of
SVs used in the proposed method is just 27.00 for
PROBLEM(A) and 86.20 for PROBLEM(B). These
are comparable with 297.31 for PROBLEM(A) and
300.21 for PROBLEM(B) when all patterns were used
for SVM training. In our method, the uppermost
number of SVs are bounded by the number of the
selected patterns. If the generalization performance is
not improved, there is no reason to project input
patterns onto too high dimensional feature space even
though all calculations are achieved implicitly.

Second, the average execution time needed to
train with all patterns were 748.78(sec) and
430.97(sec), respectively. Whereas, the training time
with selected patterns were just 1.89(sec) and
5.67(sec), even including the time elapsed due to the
proposed selection procedure. In the worst case, when
one doesn't know the data noise level(it happens
almost always), one might set the tolerance parameter
C=c0, In that case, one should endure 2772.97(sec)
and 1626.10(sec) to take the results on such simple
artificial problems. Therefore, the proposed method is
quite noticeable again at that point.

Finally, for accuracy(test error), SVMs with
selected patterns do not degrade their original
performances in both problems: on average,

PROBLEM(A): 42.53(for all patterns) vs. 41.10 (for
the selected patterns) and PROBLEM(B): 51.93 wvs.
43.60.

Fig. 7 and 8 shows the decision boundaries and
margins of SVMs both with all patterns and with the
selected patterns. Kernel parameter was fixed at the
value which was best performed with all patterns for
comparison purpose(for the selected patterns, it is not
the best one). For PROBLEM(A), RBF with s=1 and
for PROBLEM(B), polynomial with p=3 are
shown(they are marked with outlined circles in the
tables). From the figures, it is easily seen that the
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[Table 1] Simulation results of PROBLEM(A)

with ALL patterns (# 600) , Tested on 300 patterns

RBF POLY
CASE (W) 5=0.25 s=05 s=1.00 s=2.00 s=3.00 p=1 p=2 p=3 p=4 p=5
Exe. Time 50658 50674 49636 47072 47048 26056 4913t 60141 50488  518.28
C=0.1 |uofsvs k113 34 548 6500 600 6500 a3 339 292 261
4 of Test Error 34 35 29 7% 103 155 bl 35 30 3
Exe. Time 50493  488.89 45957 44989 43726 45961 47280 48016 49186 49647
C=1  |zofsvs 194 203 322 557 500 598 262 216 193 185
4 ot Test Error 38 36 33 a2 103 102 30 32 £} 3
Ex2. Time 48703 45670  A4797  A3056 43163 42538 45352  470.38  465.87 48082
C=5 |zotsvs ™ m 228 36 552 597 20 180 172 168
4 0t Test Error 31 36 32 3 29 95 k)l 33 32 36
Exe. Tims 51157 46456 44226 42446 41837 43539 45319 45385  460.22 46556
C=10 [(x#pfsvs 165 166 208 340 486 585 186 3 168 165
4 of Test Error 30 34 30 36 30 95 29 31 35 36
Exe. Time 43032 45621 48478 47710 &19.23 43330  AAA62  AAB7A 45253 45494
C=20 |x0fSVs 164 162 186 292 a 596 180 159 164 159
4 of Test Error 31 35 33 E1] 30 95 30 a0 % 35
Exe. Time 46736 46714  /A5483°\ 45319 43501 45577 46231 45528 47087 47604
C=100 |#ofsVs 152 159 167 215 291 596 70 163 159 158
4 of Test Error 30 ] 29 32 31 95 30 30 35 a7
Exe. Time 43021 47867 47588 47379 460.99 4703 47302 48576 48950  495.20
C=1000 |uptsVs 150 156 160 0 197 595 167 161 156 157
4 ot Test Error 32 3 34 3 30 95 3 29 37 38
Exa. Time 210778 268761 361206 212237 245534 | 1686.48 238574 55M33  2782M 191778
C=INF ot SVs s 238 268 599 266 600 305 289 282 600
2 ot Test Errac 5§ 36 32 29 33 a1 29 3 35 3
with SELECTED patterns (# 56 ) , Tested on 300 patterns
Exe. Time [+0.88] 104 109 0.9 0.88 0.82 0.99 104 104 115 109
C=INF  [#01SVs 17 1 9 50 56 58 a6 9 9 10
4 of Test Error 29 30 30 29 30 145 29 30 30 29
[Table 2] Simulation results of PROBLEM(B)
with ALL patterns (# 500) , Tested on 300 patterns
RBF POLY
CASE (B) s=0.25 s<05 s-1.00 s=2.00 s=3.00 | p=t p=2  p=3 p=4 p=5
Exe. Time 28038 28210 28012 27818 27132 28133 28133 28430 28842 20023
C=0.1 |uois¥s 406 354 367 420 a7 345 3z 316 308 302
|4 ot Test Eror a9 56 50 62 ] 62 53 62 50 a8
Exe. Time 2627 26612 260.95 26172 25615 25914 26436 26631 27282 27304
C=1 l#ofSVs 281 27 303 325 343 307 297 283 n m
4 ot Test Error L] a9 58 60 62 61 59 52 a2 a1
Exe. Time 25788 25250 24805 24496  243.87 24601 25062 26656 25678  262.49
C=5  j#otSys 261 254 285 302 3n 303 293 m 261 256
4 of Test Error a9 a2 a9 61 63 81 60 a7 F7] a3
Eue. Time 25458 25222 24875 24008 24167 24381 28426 26178 25332 25485
C=10 |#olsVs 256 252 27 299 306 303 203 270 257 253
4 of Test Ervor a4 ap 50 57 62 5t 80 a7 42 a3
Exe. Tims 26264 25195 24025 24228  239.47 24376 24853 25771 26578 25480
C=20 {#0otSVs 248 246 272 295 300 301 293 268 255 253
4 of Test Error 45 43 a7 57 61 61 60 a8 a2 a3
Exg. Time 25765 25288 25085 24788 25370 24836 25403 26776 25568
C=100 |#ofSVs 236 243 260 208 284 301 293 250 252
4 of Test Error 50 43 a0 55 59 61 B0 a2 a3
Exe. Time 26903 26490 26484 26529 26013 25608 26584 27539 27862 26892
C=1000 (4 ofSys 234 245 249 7 288 301 293 285 250 251
4 of Test Error 54 an a2 a5 57 61 60 25 43 .
Exe. Time 121743 132859 129838 111224 239706 | 144025 220496 95455 249032 172718
C=INF % 0fSV¥s 198 268 33 500 368 453 433 500 n 369
4 of Test Error 92 7 25 39 P 63 60 a8 a a4
494 428 483 548 s 3.85 a6g
21 24 109 109 100 108 108 108 109
39 40 a0 40 a 68 a5 40 a
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— n boundary
O support vector of class(i)
Q@ support vector of class(2)

(b) With the selected patterns (b) With the selected patterns

[Fig. 7] Decision boundary, margin and SVs [Fig. 8] Decision boundary, margin and SVs

PROBLEM (A) with polynomial kernel(p=3). PROBLEM (B) with RBF kernel(s=1).
decision boundaries formed using the selected patterns data but it is currently applied to over real world
are almost same as those with all patterns. Margins problems. Finally, we found that the misclassification
in (b) figures are much namrower than those of error rate of A-NN with a large & seemed to be
original margins in (a) since noise pattern elimination similar to the noise level which we imposed on the
enabled us to set C=co. And also the number of data on purpose. Hence, this approach could be
support vectors are remarkably smaller in (b) figures. utilized to predict the data noise level ahead of time.
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The proposed method produced encouraging results
as follows. First, the search for an optimal tolerance
parameter C is not necessary anymore. Second, SVM
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