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M/G/1 queue with disasters and mass arrival when empty
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Recently there has been an increasing interest in queueing models with disasters. Upon arrival of a disaster,

all the customers present are flushed out. Queueing models with disasters have been applied to the problems of

failure recovery in many computer networks systems, database systems and telecommunication networks. In this

paper, we suggest the steady state and sojourn time distributions of the M/G/1 model with disaster and mass arrival

when the system is empty.
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1. Introduction

Queueing models with disasters have been applied to
the problems of failure recovery in many computer
network systems, database systems and telecommunication
networks. In computer systems, sudden failures such as
power-off or server breakdown may be considered as
disasters. When the computer system fails, all the ongoing
jobs are turned useless and thus cancelled. Queueing
system with disasters can be considered as the basic model
for computer systems with potential virus working. In
telecommunication networks, breaking down of a node can

be considered as a disaster. When such situation occurs,

841

messages in the queue (node) must take another route.
Calamities, such as damages to road by earthquake and
catastrophes in the pest control problem (Kyriakidis and
Abakuks [2]), may also be considered as disasters.

In this paper, we assume the M /G/1 model with
disasters, in which a random number (k) customers
immigrate into the system as a batch when the system is
empty. During the service periods, customers enter the
system individually. This model is a generalization of the
model of Chen and Renshaw [1] which assumes
exponential service times (whereas ours assumes general
service times). In this model, when the queue is empty, a

supervisor moves a whole batch of £ customers at rate o,
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into the queue. In a situation of light traffic, this can
greatly increase the mean inter-idle time of the server, and
hence his working efficiency (see Chen and Renshaw [1]).
In addition, there are disasters who make all the customers
in the system be simultaneously removed at rate 6 >0.
For exariple, a supervisor concerned about a stressed-out
server could remove his entire workload at rate & , allow

him to take an exponential (1/¢t,) break and then start

him afresh with k& new customers with probability o, /o, .

The purpose of this paper is to obtain the steady state
distribution and the sojourn time distribution. To obtain the
results, we need to define o, (k=1,2,---) as the rate at
which a whole batch of k customers arrives into the queue

when the system is empty. Then,

alz)= iak 2*
k=1
and
d
@)=L o).

As we mentioned, customers enter the system in a

group when the system is empty. We define P, as the
probability that an arbitrary customer enters the system in

a group. Let us further define Tn as the probability that

there are n customers at a test customer’s arrival epoch and

ﬁ*(z,G) as the joint transform of the number of

customers and the residual service time at a test customer’s

arrival epoch (alike with P"(z,0) in section 2).
2. Steady-State Distribution

We use the supplementary variable technique to
obtain the steady state distribution for the system size N .
In this model, we assume the general service time with the
density function of s(x) and Laplace transform S”(8).

As supplementary variables, we use the remaining service
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time §,.Denoted by
P (x)dx=P{N=n,x<S, <x+dx}

and

P, =[P, (x)dx.

Using these probabilities, we get the steady-state equations

as
P,(t+df) = P, (f)(1— 0y df) + P, (0, )dt + si [NACRLT
n=1

P, (x—dt,t+dt)= P (x,0)(1 — Adt — &dt) + P, ()or, s(x)dt
+P,(0,#)s(x)dt

P (x—dt,t+dt) =P, (x,t)(1- Adt — bdt) + P, (), s(x)dt

+P_ (x,0)Adt+ P, (0,6)s(x)dt

(nz22). )]

By pursuing the steps used in earlier literatures, we obtain
the following results.
P0)=3 7, 0%

n=1

_ 28" (A+8-A2)
S"(A+8-Az)~z

P'(z.0)=3Y P @)

n=1

'((ao +5—(x(z))p0 _6) 2

_ z((2)— 0y = 8)p, +8) S'(A+5-22)-S"(9) _

= : €)
A+6-0-2z S(A+6-4z)-z
By inserting 8 =0 in (3), we get
P a0y @ =0 =8)p, +5) S'A+6-7n)-1
’ A+ -2z S'A+8-Az)-z
“)
Let z, be aroot of the equation,
(A+8-1z,) (S (A+6-4z,)-2z,)=0 )

then z, make the denominator of (4) equal to 0. From
that, we notice z, is a root which make the numerator of
(4) equal to 0.

{(ez, )~y —8)p, +8)-(S" (A +6-22,)-1)=0 (6)

In addition, z, mustbe a complex numberin 0<z, <1.

z

r

Let z,
A+8—-2z, =0, then z, =(A+85)/A.Since z, mustbe

be the root which satisfies the equation,

, s

a complex number which satisfies 0<z, <1, z a

root which satisfies the equation, S"(A+8—4z,)~z, =0.
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We can obtain the shape of the function,
$*(A+6 — Az, ), from the following result.

a * _ a —(A+8-2z,)x
—ZS (A+5—/lz,)—£J:e F(x)dx

= J': Axe®* S(x)dx %)

which shows us that S"(A+8-2z,) >0 in the

Z

r

range of 0<z, <1.In addition, we can easily obtain that

aZ
2
Z

r

S*(A+8-2z,) >0 in 0<z, <1. From that, we

can determine the shape of the function, $"(A+8 —Az,),
and we can see that there is only one root z, in
0<z, <1.

In general M/G/1l model, there is a well known

equation,

B, (0)=S"(6+A-AB, (9)). ®)
Substituting 6 in (8) by & , we can obtain

B, (6)=S"(8 +A—AB, (5)). 9)

(9) show us that the only root, z,, is B;(5). Inserting
z, =B, (5 ) in the equation (6), we obtain
PO = 6 *
o, +6—al(B,(6))

From (4) and (10), we get

P(z)=F, + P'(z,0)

8
- + +
0, +6—-alB}(5))

(10)

2 a@)-alB®) g (A+s-29)-1
A+6-2z a,+6-alB()) g (A+8-A) -z

(11)

3. Sojourn Time Distribution

In order to obtain the sojourn time distribution, we use
the steady state distribution at an arrival epoch (see Yang
et al [3]). If a test customer arrives when there are i
customers in the system, his unfinished work is expressed
as the summation of the residual of ongoing service time
If a test customer

and the i customers’ service times.

arrives during idle periods, he arrives in the group of
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customers. For that reason, in the case of the test customer
who arrives during idle periods, the unfinished work is
defined as the summation of the service times of the
residual customers of the group, g, , and his service time.
From that, we can describe the unfinished work of an

arbitrary test customer as

. 1-G(2)
U (9)=Pg ‘(l—z)E(g).Z z=8"(0)
L 7 (5°0),0). (12)
-7,

Since this model has the different customers’ arrival
rates, PASTA doesn’t hold in this model. In other words,
the steady state distribution differs from that at an arrival
epoch. For that, we should derive the steady state
distribution at an arrival epoch.

Let us assume a model having the same steady state
distribution at an arrival epoch as the model of this paper,
in which PASTA holds. We can easily obtain the model by
manipulating the arrival rates, ¢, in idle period as
follows: Let ox be the arrival rates in idle periods of the
new model. In order that PASTA holds in this model, we
have ao=A . In addition, we define ar to meet
ax /oo =a,/a, , in order that the steady state
distribution at an arrival epoch of the new model is equal

to that of the original model. Then

L (13)
aO

- SO AL k A

a(z)=Y ozt ==Y o 2" =—0(2) (14)
k=1 Oy k=1 (253

Using ao=2 and (14) instead of o and a(z), we
obtain the p, and the P’ (z,8) of the new model by the

formula (3) and (10), which are equal to @, and

m (2,8) of the new model. From that, we get

To

) 5
o +6 —alB(5))

_ .6
" A, + S0, — Aa(B](5))

(15)
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ﬁ‘(z,G)
_ e -ao -8, +8) 5'A+5-22)-5"®)
A+6-0-2z S'A+6-22)-z

_ Azé ' a(z)—a(B;(S))

A+8-60-2z Aa, +ba, ~ Act(B; (5))

S (A+8-22)-57(6)

16
S"(A+6-2A)-z (1o

Since customers arriving during idle periods enter the
system in group size, the o is differ from the probability,

P

, - For that reason, we should derive the ratio of

customers who enter the system when the system is idle.
The ratio is acquired by the number average of the
customers. Let E(') be the average number of the
customers who arrives during a cycle, a busy period and
an idle period. Then
E(W;) ___ E(N,)
E")  E(N,)+AE(B)
_ da'(1)
Aa, + 60 (1)~ AaB; (5)]
Substituting (17) into (12), we get
3s°(6)

Aax, +6a' (1)- Ac(B; (5))

(6-6)or, —als" @)+ 2[-5"( Xao o(B; )

(r+8-6-25"0)1-5"(0)

In M/G/1 models with disasters, the sojourn time, f,

The T°(f) is described

P =

4

amn

U'e)=

(18)

is described as the min(u,D).

as
T'(0)=Pu<D)-U'(6 u<D)+P(D<u)-D"(® |D<u)
=Uie U;J(?(;)a) Hi-v'e) efa ’1_12/(?(;)5) '
(19
From (18) and (19), we have
5 0 55" (6+5)

T'(0)=

615  0+6 Ao+ (1) Aa(B; (5))

All-5"0 +6))or, - o(B;0))- 60, — (s (6 + 6))
A-6-15"0+5)-5"(0+5))

(20)

Using (20), we can get the expected sojourn time, .
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d .«
W="£T (9)|e=0

5 /la0+5a /ux(b ) 1-5°(5)
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