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Abstract sophisticated statistical models to aid the credit granting

This paper proposes a two-phase mathematical
programming approach by considering classification gap to
solve the proposed credit scoring problem so as to
complement any theoretical shortcomings. Specifically, by
using the linear programming (LP) approach, phase 1 is to
make the associated decisions such as issuing grant of
credit or denial of credit to applicants, or to seck any
additional information before making the final decision.
Phase 2 is to find a cut-off value, which minimizes any
misclassification penalty (cost) to be incurred due to
granting credit to 'bad’ loan applicant or denying credit to
'good  loan applicant by wsing the mixed-integer
programming (MIP) approach. This approach is expected to
find appropriate classification scores and a cut-off value
with respect to deviation and misclassification cost,
respectively.

Statistical discriminant analysis methods have been
commonly considered to deal with classification problems
for credit scoring, In recent years, much theoretical research
has focused on the application of mathematical
programming techniques to the discriminant problems. It
has been reported that mathematical programming
techniques could outperform  statistical  discriminant
techniques in some applications, while mathematical
programming techniques may suffer from some theoretical
shortcomings.

The performance of the proposed two-phase approach
is evaluated in this paper with firm data and loan
applicants data, by comparing with three other approaches
including Fisher's linear discriminant function, logistic
regression  and some other existing mathematical
programming approaches, which are considered as the
performance benchmarks. The evaluation results show that
the proposed two-phase mathematical programming approach
outperforms the aforementioned statistical approaches. In
some cases, two-phase mathematical programming approach
marginally outperforms both the statistical approaches and
the other existing mathematical programming approaches

1. Introduction
1.1 Background and Motivation

Consumer credit is granted by various other lending
institutions including banks, building societies, retailers and
mail order companies, which is a sector of the economy
that has been grown rapidly. Traditional methods of
deciding whether to grant credit to a particular individual
have used human judgment on the risk of default, based on
the experience of previous decisions. However, economic
pressures resulting from increased demand for credit, allied
with greater commercial competition and the emergence of
new computer technology, have led to the development of

decision.

Credit scoring is the name used to describe the
process of determining how likely an applicant is to default
with repayments. Statistical models which give estimates of
these default probabilities are referred to as scorecards or
classifiers. Standard methods used for developing scorecards
include discriminant analysis, logistic regression, decision
tree and mathematical programming. An accept/reject
decision can then be taken on a particular applicant by
comparing the estimated good/bad probability with a
suitable threshold. Figure 1 represents a graphical
illustration of credit scoring.

‘Good’ group

v

Fig. 1. A Graphical illustration of Credit Scoring

Credit scoring is one of classification problems whose
objective is to predict the group membership of a new

" observation by using measured values on a set of relevant
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variables or attributes. Fisher's linear discriminant function
and the quadratic discriminant function have long been the
standard techniques for establishing discriminant rules in
classification analysis (Ragsdale and Stam (1991)).
However, both of these discriminant functions are based on
the assumption of multivariate normality of the measured
variables (attributes). In many situations involving real data,
these assumptions are seriously violated, for instance, in the
case of binary variables and when outliers are present in
the data set.

Recently, a number of researchers have introduced
and  investigated  mathematical  programming (MP)
formulations to solve the classification problem, resulting in
a number of useful non-parametric techniques which have
been shown to perform well under various conditions
(Bajgier and Hill (1982), Freed and Glover (1981a, b,
1986a), Gehrlein (1986), Joachimsthaler and Stam (1988),
Stam and Joachimsthaler (1990), Koehler and Erenguc
(1990)). The most common mathematical programming
approaches suggested in the literature are the MSD
(minimize the sum of the deviations), the MMD (minimize
the maximum deviation), and hybrid models which seek to
minimize external deviations and maximize internal
deviations. Mixed-integer programming (MIP) models have
also been suggested to minimize directly the number of
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misclassified observations (Koehler and Erenguc (1990),
Stam and Joachimsthaler (1990)).

Mathematical programming methods have certain
advantages over the parametric methods (Erenguc and
Koehler (1990)):

(1) Mathematical programming methods are free from

parametric assumptions;

(2) Varied objectives and more complex problem

formulations are easily accommodated;

(3) Individual weights to each of the data points and

misclassification costs, either fixed or depending on

the extent of misclassification, are easily incorporated;

(49 Some mathematical programming  methods,

especially linear programming, lend themselves to

sensitivity analysis.

Although the classification performance of these
methods is promising, several researchers have pointed out
that a number of these mathematical programming
formulations  suffer  from  theoretical  shortcomings
(Markowski and Markowski (1985), Freed and Glover
(1986b), Koehler (1989)). These include unacceptable
solutions (if a discriminant function of zeros results, in
which case all observations will be classified in the same
group), improper solutions (if all observations fall exactly
on the separating hyperplane), and unbounded solutions (if
the objective function can be improved without Ilimit).
Therefore, the outcomes can lead to useless or erroneous
results and interpretation (Koehler (1989)). Of course, the
MIP formulations also can require extensive computational
resources that may be prohibitive for large data sets.

Thus, it is necessary for mathematical programming
formulations to overcome unacceptable solution, improper
solution and computational requirement. This provides the
authors with the motivation to propose a two-phase
mathematical programming approach which  explicitly
considers the classification gap associated with a gap
constraint formulation. This classification gap can be
viewed as a fuzzy area between the groups which requires
special consideration in establishing the final classification
rule.

The effectiveness of the two-phase approach is then
compared with the aforementioned other methods including
Fisher's linear discriminant function (FLDF), logistic
regression, MSD and MIP using empirical data sets.

1.2 Organization of The paper

The remainder of this paper is organized as follows.
In Section 2, the literature review on mathematical
programming approaches is presented. Considerations of the
existing mathematical programming approaches and a
mathematical formulation of the proposed two-phase
mathematical programming approach are represented in
Section 3. Section 4 presents the results of computational
experiments to show that the two-phase mathematical
programming approach outperforms or is as good as the
other approaches in the literature in terms of the relative
classification performance. Finally, some concluding remarks
are discussed in Section 5.

2. Literature Review
Among the mathematical programming approaches in the
literature, two typical models including the MSD model and
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the MIP model have been most widely used for
discriminant problems. The two typical models are now
introduced.
2.1 MSD model

One of the most widely used mathematical programming
models for discriminant problems is the MSD (minimize
the sum of the deviations) model (Freed and Glover
(1981b)). In general, the MSD model tries to find a
hyperplane that minimizes the weighted sum of any

associated exterior deviations. Suppose that there are |

observations in group _ (, ,.) on independent
(measured) variables (attributes). The MSD model is then
given as in Problem (P1).

(p1) Min z=1'd,+1'd, ()

subject to
- e @
- e 3

A @

, unrestricted, (5)
where _ is an ( ) matrix of observations in group _,
s,are the (. ,) vectors of deviational variables
G A represents an  appropriately dimensioned

represents an appropriately
)
is a scalar variable. Let
th
(i. e, the th row of _ ), and let

column vector of ones,
dimensioned column vector of zeros,
vector of attribute weights, and

denotes a (
_.Tepresent a (, ) vector corresponding to the
observation in group
,. represent the th component of , . The value of the
variable , represents the extent to which observation _

is misclassified. For instance, if observation in group 1 is
correctly classified, then the relation _, _will hold in
Eq. (2) and the objective in Eq. (1) of minimizing the sum

of any undesirable deviations will imply that , ..
Similarly, a correctly classified observation belonging to

.in Eq. (3), and
the corresponding deviation variable , will be equal to
zero by Eq. (1). However, if observation in group 1 is
. holds, which, by

group 2 will satisfy the relation

-r

misclassified, then the relation

-

Eq. (2), forces ,  to be a strictly positive value that is
penalized as in Eq. (1). Likewise, Eq. (3) ensures that the
relation ,  , holds for any observation in group 2
that is misclassified (. e,, , if and only if

. 2

Problem (P1) appeals intuitively, as its optimal solution
( * °) identifies a separating hyperplane in  , which
minimizes the extent of misclassification as measured by
the sum of any undesirable deviations from the separating
hyperplane for all observations. It is important to note that
minimizing the extent of misclassification is not necessarily
the same as minimizing the number of misclassification
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observations. For instance, the MSD model makes no
preferential distinction between solutions with and
d, =(0,0,0,100) o d, =(25,25,25,25) even though the
first solution has one misclassification but the second one
has four misclassifications.

2.2 MIP model

In general, Mixed integer programming (MIP) models
try to find a separating hyperplane that minimizes the
number of misclassifications. The MIP model that has been
suggested by several authors (Freed and Glover (1986b),
Glover (1988)) is given as in Problem (P2):

(P2) Min z=1T+11, 6)
subject to
wr. acw 4 )
<. e e ®
, unrestricted, )
where represents a large positive number, , . denote

zero-one vectors and the other notations are the same as
those of Problem (P1). Let , represent the th component
of , . The value of the deviational variable
the extent to which observation _  is misclassified. For
instance, if observation in group 1 is correctly classified,
then the relation Jholds in Eq. (7) and the
objective in Eq. (6) of minimizing the number of
misclassifications implies the relation , .. Similarly, a
comrectly classified observation belonging to group 2 will
satisfy the relation .in Eq. (8), and the
corresponding deviational variable , will be equal to zero
by Eq. (7). However, if observation in group 1 is

misclassified, then the relation _ _ . holds, which, by

Eq. (8), forces , to be a strictly positive value that is
penalized in Eq. (1). Likewise, Eq. (3) ensures that the

, holds for any observation

,.represents

-r

relation in group 2 that

is misclassified (i. e.,, ~, if and only if _ L)

As mentioned above, various MIP models have been
proposed for minimizing directly the number of
misclassifications in the training sample (Koehler and
Erenguc (1990), Stam and Joachimsthaler (1990)). Such
methods are inherently insensitive to outliers, since alt
misclassified observations are weighted equally, irrespective
of their distance from the separating hyperplane.

In Section 3, this paper refers to a number of
problems/concerns that researchers should consider in the
study of mathematical programming approaches for
determining linear discriminant functions. Thereupon, a
two-phase mathematical programming approach will be
proposed to solve those problems to some degree and to
show its outperforming the existing approaches in the
literature.

Tn-

3. Mathematical Formulations and Solution Approach

3.1 Considerations of mathematical programming approaches
Most of the literatures considering mathematical
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programming methods for determining linear discriminant
functions are classified into two groups: one group that
gives empirical performance comparisons between their
models and parametric methods and the other group that
points out problems from any other earlier models.
Therewith, a number of problems and issues including
unacceptable  solution, gap and computational effort
(efficiency) that have appeared or been raised in the
literature are now explained.

3.1.1 Unacceptable solution
A system of equations of the form

-r -

has a trivial solution of ( ~  ~) which gives an
unacceptable discrimination, so that every observation will
be classified into both groups 1 and 2. For instance, LP
formulations may generate this type of solution (Koehler
(1989, b)).

A variety of different techniques has been suggested
to prevent it from having a zero solution. These include

(1) Adding a linear constraint to prevent .

(2) Adding a non-convex constraint to prevent

P

and
to prevent

(3) Translating the data to prevent
(4) Adding a redundant constraint

All of them, except method (4), have side effects.

A linear equality constraint used to prevent a zero
solution takes the form of , where is a .
vector. This certainly prevents a zero solution but also
prevents any from being included in the set

., . . This overkill is potentially detrimental.
Therefore, another normalization constraint is required to
solve such troublesome.

A typical non-convex constraint is . This
constraint is only restricted to have so that it is
superior to any other type of linear constraint to prevent a
zero solution. If ( ) gives  misclassifications, so does
(. . Since (
hyperplane as (., . ), one can simplify the above
constraint to be without any loss of generality.
Therefore, although the constraint is restricted to
be _, it dose not restrict considering any hyperplanes.
(This is not the case with linear constraints. If

. ) for any ) gives the same

is
non-zero and included in the set
scalar multiple of is also

. » then any

included in the set

, ~ - Hence, a linear constraint with non-zero
is necessarily to restrict considering some hyperplanes.)

A constraint similar to is ”" > Wwhere

",_,”denotes a norm of . While both types of constraints

prevent a solution, they change a linear program into
a non-convex programming problem, which is very hard to
solve.

The above-mentioned constraints are
normalization  constraints or  detrimental

non-linear
to solve
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classification problems, so that it is necessarily to include
appropriate linear normalization constraints in the proposed
two-phase mathematical programming approach to solve any
unacceptable solution problems.

3.12 Gap

LP formulations cannot directly handle any strict
inequality constraints. As seen above, it is interesting to
find a solution to the constraints

-r -

Most approaches have relaxed the inequality (>)
constraint to the equal-or-greater-than ( ) constraint.
Gehlein (1986) and Glover (1991) have replaced the
constraint by _, ; where cand is small.
They have introduced a gap where observations may fall
into the gap and be unclassified. Because of existence of
unclassified observations, such classification gap has been
considered as being undesirable in the literature. However,
this paper does not want to view such classification gap as
being undesirable, but merely view it as an area where
additional analysis is required to determine the appropriate
classification rule.

3.1.3 Computational Effort
Real-world lincar discriminant problems typically have a

large number of observations ( )} and a small

number of attributes ( is usually relatively small). For
example, many linear programming formulations typically
have a large number of constraints and a small number of
variables, which its dual has the opposite structure so as to
be more preferable to handle. In either case, polynomial
methods exist to solve them though.

When one considers mixed-integer  programming
approaches, at least zero-one integer variables will be
involved, which is a major problem. For this reason, in
order to reduce the number of observations applied to any
mixed-integer  programming  approach, a  two-phase
mathematical programming approach is proposed in this
paper. After all observations are filtered through Phase 1,
any remaining observations that are not classified yet in
Phase 1 are applied to Phase 2.

Na?

3.2 Two-Phase Mathematical Programming Approach

As mentioned previously in Section 3.1, classification
gap has been considered as being undesirable, while,
however, this paper views classification gap as a merely
region such that the classification decision is not clear in
the region and so additional analysis is required to
determine the appropriate classification rules. Moreover, to
prevent unacceptable solution and reduce computational
efforts, appropriate normalization constraints are presented
in a two-phase mathematical programming approach.

A simple illustration of the composition of the proposed
two-phase mathematical programming approach is depicted
as in Figure 2.
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Fig. 2. Illustration of the Proposed Two-Phase Mathematical
Programming Approach

In Phase 1, the classification gap is identified, while in
Phase 2 the explicit focus is to analyze the fuzzy area of
observations defined by the classification gap. The problem
descriptions and mathematical formulations of Phase 1 and
Phase 2 are now discussed.

3.2.1 Phase 1

The objective of Phase 1 is to minimize the sum of
deviations from each classification score. The objective of
Phase 1 is to minimize the sum of deviations from each
classification score. Phase 1 is illustrated as in Figure 3.
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Fig. 3. A Graphical illustration of Phase 1

Suppose that one has a sample of size in Group 1
('good’) and in Group 2 (‘bad) ( ) and an
element of the set of  attributes from the application
form, say _, _,denotes the value of attribute
(/=1,2,-,p) in observation (7=1,2,-*, 7,
from Group ,,, ... Let _  be the  th attribute
weight, be the cut-off value for Group 1, be the
cut-off value for Group 2, , be deviation from when

any observation  from Group 1 is misclassified and |_

be deviation from when any observation  from Group
2 is misclassified. Phase 1 can be formulated as Problem
(P3).
(P3) Min le‘ﬂ|dl + v.‘dz
subject to

(10)
» .
s s di 2 o, = 1,2, (1)

P
~Xxuwi—di e, i=ny+ 1,0, 0(12)
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oot o . Unrestricted a7n
The formulation of Phase 1 explicitly considers the
classification gap so as to facilitate a useful interpretation
of the gap in finding appropriate classification scores. If a

classification score of any observation is over or under

_, then it would be considered as Group 1 or Group 2,
respectively; otherwise, it would not decide at Phase 1.
Constraints (13) and (14) are bound constraints for upper
and lower classification scores. Constraint (13) restricts the
classification score of observations in Group 1 to be above

. Similarly, constraint (14) restricts the classification

score of observations in Group 2 to be under . By
constraints (13) and (14), the objective function may
provide a good separation solution. That is, constraints (13)
and (14) try to enforce the classification score of

observations in  Group to be _, for , ..
Constraint (15) is a gap constraint. The relative difference

between _affects  the

estimates for . Therefore, constraint (15) is also a

and scaling of parameter

normalization constraint. In Problem (P3), and  are
simply defined as two decision variables. Phase 1 has an
objective function of minimizing the sum of deviations

from ecach group classification score ( , ) Al
observations are filtered through Phase 1 and the remaining
observations, which are not classified in Phase 1, are
applied to Phase 2.

32.2 Phase 2

After solving Problem (P3) in Phase 1, Phase 2 will
consider only the observations that are not classified yet in
Phase 1. In Phase 2, the objective function is to minimize
the weighted sum of misclassified observations. A Graphical
illustration of Phase 2 is depicted as in Figure 4

laeiled &
watge

&8 Levsifie siom gap

reatind s

Zevge 2

Fig. 4. A Graphical illustration of Phase 2

Let be the number of observations in Group 1
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which are unclassified in Phase 1, be the number of
observations in Group 2 which are unclassified in Phase 1

(m=my+m,) _ be the cost of misclassifying Group 1

as Group 2 and _, be the cost of misclassifying Group 2
as Group 1.

In Phase 2, the cut-off value can be determined by
solving the following mixed-integer programming Problem
(P4):

S

—m+l

Minz =C, 1, +C
(P4) \2], ! 4

subject to

18
gx,,.,(wj -w)+M-I,zc, i=1,2, . m (19

P

P
wa w;—w; =M-I, <c,
J=

1= my+1,-, mQ20)

p

oW +wi)=1, @1

o ead=12,p (@@

e d=10,2,00,0 (UL)]

T oniend=12,p 9

e d=12,00p (25)

PSRN £l WAL / (26)

unrestricted 27

ot s G L L0N28)

where  is a large positive number, , is the
binary variable indicating whether observation from

group _ is misclassified or not, that is, if an observation

is misclassified, then , ~, otherwise, ,

To prevent any unacceptable solution, mentioned
previously as in Section 3.1, some normalization constraints
are added to Problem (P4) (referring to Glen (1999)).

Constraints (21»-~(26) are normalization constraints.

n*

_.and

+
P~

and

o.ar€ binary variables such that _
1< > where

R is a small positive number.

o: 1 ..
(if and only if _ +is positive and ., ,if and only

if _is negative.
The procedure of the proposed two-phase mathematical
programming approach is summarized as follows:
Step 1: Solve Problem (P3),

Step 2: According to each classification score

from Problem (P3), classify observations into each
group.

Step 3. Solve Problem (P4) with observations
which are not classified into Group 1 or Group 2 in
Step 2.

Step 4: According to the final cut-off value

(classification  score), classify  unclassified
observations into each group.
Through this procedure, the proposed two-phase

mathematical programming approach can classify loan
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applicants more accurately than any existing mathematical
programming approaches in the literature.

In Paper 4, the performance of the proposed two-phase
mathematical programming approach is compared with that
of the other existing approaches by experimenting with real
managerial problems computationally. The comparison
results show the proposed that two-phase mathematical
programming approach is at least as good as other
statistical approaches.

4. Computational Experiments

To test the effectiveness of the proposed approach,
this Paper compares it with the other approaches in the
literature. ~ The  proposed  Two-phase  mathematical
programming approach was implemented by the CPLEX
mathematical programming solver. This solver was also
used 1o solve the MSD and MIP formulations discussed as
in Section 2. In the two-phase mathematical programming
approach, to solve Problem (P4) of Phase 2, each

parameter was set up as o o
. The cost matrix for all the data sets (Michie,
D., Spiegelhalter, D.J. and Taylor, C.C. (1994)) is given in
Table 1. These costs are what are called "opportunity
costs”. The columns are the predicted classes and the rows
are the true classes.
Table 1. Cost Matrix for the data sets

-~ ~? *

Good (1) Bad (2)
Good (1) 0 1
Bad (2) 5 0
All the approaches including logistics regression,

Fisher's linear discriminant function, MSD, MIP and
two-phase mathematical programming approach were applied
to two data sets. The Fisher's linear discriminant function
and logistic regression approach were used to calculate the
discriminant function by using SAS. All computation was
carried out on a Pentium-IIl computer.

Bankruptcy firm data and German credit data were
taken as examples for computational experiments. These
approaches were compared one against another in hit-ratio
that is the ratio of the correctly classified observations to
the classified observations, and also in cost that is the sum
of misclassification costs based on the cost matrix.

4.1 Bankruptcy firm data

Bankruptcy firm data set (Johnson and Wichern
(1988)) represents financial information for 46 firms on
four indices from Moody's Industrial Manuals regarding
firms that went bankrupt or remained solvent during a
two-year interval following the measurement of the
attributes. This dataset consists of 21 bankrupt firms
collected over a period prior to their bankruptcy and for 25
non-bankrupt firms collected over a period of the same
duration. The data set consists of four numeric attributes.

For bankruptcy firm data, the whole sample is used
for implementation. And in order to test the predictive
power of the classification techniques, 32 firms are chosen
as the training samples and the remaining 14 firms are
used as validation samples.

The hit ratios and misclassification costs of the five
approaches to bankruptcy firm data are listed in Table 2
and Table 3, respectively.

st=03l
Table 2. Hit ratio of the five approaches
to the bankruptcy firm data

Method | Sample |C o | ot | slete | reteso | Rt
Whole 23 3 18 2 J|0.8913
LR* [Training 13 2 14 3 |0.9063
Validation 5 0 6 3  flo.7857
Whole 24 3 18 1 [0.9130
FLDF |Training 14 2 13 3 {0.8438
Validation 6 0 6 2 0.8571
Whole 23 4 17 2 [0.8696
MSD |Training 15 1 14 2 [|0.9063
Validation 6 0 6 2 1lo.8s71
Whole 23 3 18 2 o911
MIP |Training 15 1 14 2 [j0.9063
Validation 6 4 2 2 |los714
Whole 25 1 18 2 |0.9348
PTh‘::e Training 15 1 14 2 |0.9063
Validation 7 0 6 1 [0.9286
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Table 3. Misclassification cost of the five approaches
to the bankruptcy dat

Method Two-phase
LR* | FLDF |MSD| MIP
Sample MP
Whole sample 17 16 22 17 7
Training sample | 13 13 7 7 7
Validation
3 2 2 22 1
sample

(* LR : Logistic regression)

In Table 2, the proposed two-phase mathematical
programming approach shows higher hit-ratios than the
other four approaches in the whole, training and validation
samples. In Table 3, the two-phase mathematical
programming approach shows costs less than the other
approaches on the basis of cost matrix.

In case of bankruptcy firm data, sample size is small
and all attributes are numerical. Although multivariate
normality —assumptions were accepted, the proposed
two-phase mathematical programming approach outperformed
the other statistical approaches in terms of classification
accuracy and cost. It is also natural that the two-phase
mathematical programming approach outperformed MSD
model and MIP model, because it is designed to
complement any defect of MSD model and MIP model
4.2. German credit data

The data set is obtained from the Department of
Statistics, University o Murich
(http://www.stat.uni-muenchen.de). The qualitative attributes
are given a score that is based on the assessment of
experienced bank specialists dealing with credits. German
credit data set contains 400 applicants with 280 being
accepted and 120 being rejected. Usually the information
needed by the decision maker is given on the application
form. The data set consists of twenty attributes

The hit ratios and misclassification costs of the five
approaches to German credit data are listed in Table 4 and
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Table 5, respectively.
Table 4. Hit ratio of the five approaches
to the German Credit data
Correctly | Wrongly |Correctly| Wrongly || Hit
Method | Sample accepted | accepted | rejected | rejected || Ratio
IR Training 122 29 34 15 |0.7800
Validation | 118 32 28 25 07150
FLDF Training 105 15 48 32 [0.7650
Validation | 104 16 41 39 j0.7250
MSD Training 107 35 28 30 |[0.6750
Validation | 103 34 23 40 }10.6300
MIP Training 104 28 35 33 |[0.6950
Validation 105 39 18 38 0.6150
Two |Training 113 13 50 24 |0.8150
Phase |validation | 105 22 35 38 {o.7000

Table 5. Misclassification cost of the five approaches
to the German credit data

Method Two-phase
LR | FLDF [MSD| MIP
Sample MP
Training sample | 160 107 | 205 | 173 89
Validation
185 119 | 210 { 233 148
sample

In Table 4, the proposed two-phase mathematical
programming approach shows higher hit ratio than the other
approaches in the training sample. Moreover, the
misclassification cost of the two-phase mathematical
programming approach is less than that of any other
approaches in the training sample in Table 5.

In case of German credit data, 13 attributes are
qualitative or binary variables among attributes, so that the
multivariate normality assumption underlying parametric
statistical technique such as Fisher linear discriminant
function is being violated. Under this situation, the
two-phase mathematical programming approach may also be
a good alternative to parametric statistical techniques.
Similarly, given bankruptcy firm data, the two-phase
mathematical programming approach also outperformed the
other existing mathematical programming approaches.

The overall conclusion is made based on the
experimental  results that the proposed two-phase
mathematical programming approach may be a good
alternative to other statistical approaches and be an
improving approach of the existing mathematical
programming approaches.

5. Conclusions

In this paper, a two-phase mathematical programming
approach is proposed for solving the proposed credit
scoring problem. This approach differs from the previous
formulations in the literature such that it explicitly
considers the classification gap and provides a means for
classifying observations which fall within the gap. By using
a linear programming (LP) to consider the classification
gap, Phase 1 makes decision to grant credit, deny credit, or
to seek additional information before making a decision. On
the other hand, Phase 2 finds a cut-off value, which
minimizes the misclassification cost of granting credit to

1050

'bad' or denying credit to 'good' by using the technique of
mixed-integer programming (MIP).

The proposed approach has been tested to see if it
performs as well as other statistical approaches. In the
empirical test carried out with bankruptcy firm data and
German credit data, the proposed approach has shown that
it outperforms the existing mathematical programming
approaches and other statistical approaches in the literature.

Based on the test results, it is concluded that the
proposed two-phase mathematical programming approach
may be at least as good as statistical approaches and
traditional mathematical programming approaches for credit
scoring and discriminant problems
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