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Gain-phase margin specified PI speed control of

a PM synchronous motor
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ABSTRACT - Simple tuning formulae are derived to
design a PI controller to meet the gain and phase margin
specifications. These formulae are suitable for the
auto-tuning of a process where the robustness should be
guaranteed. The auto-tuned PI controller is examined for
‘the speed regulation of a PM synchronous motor.

1. Introduction

Vector current control technique based on field
orientation enabled the electromagnetic torque of AC
servomotors to be controlled such as separately excited
DC motors. In most cases, the dynamics of current control
for the torque generation could be designed much faster
than the mechanical dynamics of the motor. Therefore, the
electrical dynamics is often eliminated for the design of
speed or position controllers. Assuming a constant inertia
load, the servomotor under speed control can be modeled
as a first order plus dead time process because the open
loop response for a stepwise torque input shows an
over-damped characteristic. PI controllers are known to be
suitable for the processes that have over-damped step
responses. For this reason, PI controllers are widely used
for the speed contro! of a motor. Considering model
uncertainties of the motor mechanical dynamics, gain and
phase margins (GPM) specified PI tuning formulae have
special advantages. Since gain and phase margins are
defined as a set of nonlinear equations, simple tuning rules
are limited to the low order processes and approximations
are generally involved. Astrom et al"! introduced the
relay auto-tuner that approximately identified the critical
frequency information to move the compensated Nyquist
curve to pass through a specified design point. Ho et al?
used a rough linear approximation to obtain a closed form
solution. Though the accuracy is limited, the PI controller
is designed to pass through two design points at the
Nyquist curve. In this paper, more accurate GPM tuning
formulae are obtained by using the optimal approximation
theory. With the proposed tuning formulae, the first order
plus dead time (FOPDT) processes are easily auto-tuned

with accuracy.

2. Robust PI Speed Control

2.1 Gain-phase margin Pl tuning formulae
The process transfer function Gp(s) and the controller
transfer function Ge(s) are denoted as follows:

km — Ls
G =5yt ®
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G.(S) =k, + = @

The gain and phase margin definition equations are
rearranged as follows:
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where @, and @, are the phase crossover frequency and
gain crossover frequency, respectively. If the parameters

(@kJh), (@gTm)> (GoTm)’s (Gpky/k)’, in eqns. 3-4 are
3 8 P P

determined as sufficiently large values compared to the
unity, the square roots can be eliminated for the
approximation. Without loss of generality, the minimum
value is selected as 10. On the other hand, the arctangent
functions in eqns. 5-6 are approximated by the first order
polynomials as follows:
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where x is one of (wek/ki), (GeTm), (WpTm), (Woky/k). The
coefficients in eqn. 7 are determined by using the Remez
exchange algorithm! where the maximum approximation
error is minimized over the defined ranges. Fig. 1 shows
the approximated arctangent function and related error.
Thus, eqns. 2-6 can be rewritten as follows:
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o 0.96853k; = 0.96853 Cw.L=0. (10

2 wk, WpT, P

Eqns. 8-10 are solved to derive the GPM PI tuning
formelae as follows:

_ 4, {$n,+0.57(A,, — 1))

11
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k, = — 2= (12)
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k= k,(1.62184w, — 1.03249Luw? + 1 /7,). (13)

For the given restrictions on approximation, the tuning
formulae in eqns. 11-13 are analyzed for the FOPDT
processes to obtain the achievable GPM values. In Fig. 2,
the selectable boundaries of gain and phase margins are
uniquely determined by the normalized dead time L/Tp.
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Fig. 2 Achievable GPM boundaries for the FOPDT processes.

2.2 |dentification of a motor mechanical model

Process identification is one of the most important
procedures for the controller design and tuning.
Traditional ways of process identification can be divided
into the time domain identification and the frequency
domain identification. The relay feedback is a special case
of frequency domain identifier that approximately
identified the ultimate gain and the phase Crossover
frequency of a process.

Mechanical transfer function of a motor for the speed
output is described in eqn. 1. Identification of the nominal
model is not easy because of nonlinear friction terms and
backlash. For the process with negligibly small dead time,
traditional Ziegler-Nichols step response method does not
give an accurate result. Therefore this paper tried to use
the input-output relations of a relay feedback for the
identification of nominal mechanical parameters. The
describing function of a hysteric relay is given as follows:

N(a) =24 1+(£)2— Ade (14)

ma a ma

where d, &, and a are the relay amplitude, the hysteric
band, and the sinusoidal input amplitude, respectively.
Since AC servomotors require vector current control,
position information is always available. Thus, the
position is redefined as a new output and described as
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When the motor in eqn. 15 is controlled by the hysteric
relay in eqn. 14 with unity feedback, a stable oscillation
may be induced in the loop with the condition as follows:

N(a)Gp(jw,) =—1, (16)
N
Gp(jw,) =~ W(a) o
= Sar ;T
=" 4d 744 .

Nyquist plot of -1/N(a) function and Gip(s) is presented
in Fig. 3 where the stable oscillation is generated at the
operating point of cross point.

From eqns. 15 and 17, the parameters of process model
in eqn. 1 can be identified as follows:

1| . | maw, . _1(8)
L=—1<sin —-sin” | —
. o, 4k _d al, (18)
7, = 1 {4dk”' cos(a)cL)—e}

a)cx/a2 -g2 | 7o, . (19

where a>¢. The static gain of an integrating process is
undefined. Therefore, the parameter &, is identified by
using a pulse control input #, which is applied for a finite
duration At. If the change of the output is measured as y,
kr is represented as follows:

- upAt . ' (20)

Gip(s)

Fig. 3 Nyquist plot of -1/N(a) function and Gip(s)

2.3 On-line tuning experiment

The PM synchronous motor used in the experiment is
characterized to have a rated torque of 9.8 N-m, a rated
speed of 4% rad/sec, and a rated power of 123 W. From the
relay test shown in Fig. 4, the process parameters km, Trm,
and L are determined as 20.5, 0.3148, and 0.0074,
respectively. The normalized dead time L/t is employed
in Fig. 2 for the GPM specifications. The rectangular
points in Fig.2 show the selected sets of specifications
(Am‘, (lJm°). By using egns. 11-13, the on-line calculations
of the control parameters (4, k) have been done to fill up
a look-up table as shown in Table 1. In this table, GPM
(Am, §m) are predicted by using the nominal process
parameters. Compared to the specified values, the gain
margin is designed within 3% error and the phase margin
is designed within 6% error.

Fig. 5 shows the transient responses for the different
GPM specifications. In this figure, a smaller overshoot is
observed for the larger GPM specifications. For the
continuous operation, the speed reference is changed from
10 rad/sec to 10 rad/sec in a period of six seconds.

Fig. 6a shows the profile of the load disturbance and
compensating torque generated by the motor. In Fig. 65, a
good transient response is obtained at (i) by selecting a
large GPM specification (9,70°). During the operations,
the maximum overshoot (undershoot) and steady state
error are continuously measured. When the disturbances
are frequently applied, (Am q)m') are evolved to (7,65,
(5,60%), (3,50°), and (2,35°) at the time of (ii), (iii), (iv),
and (v), respectively. As a result, the disturbances are
effectively compensated.
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Fig. 4 Relay test for the process identification [experiment].
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Fe_cffi . 1 Tabie 1 Gain look up table for the GPM PI auto-tuner.
L b3 500 GPM spec. design values | obtained results
5 /\k/-kw = Am* q)m* kp ki Am (Dm
5 : 5, 60F)
5 == for mmanies 2 35° 1.51 40.52 1.94 33°
N I ] 7, 63°) 3 50° 1.04  17.66 293 49°
B e B ey e e e i i xaas 5 60° 063  7.88 490 60°
9 // s 1 9, 70) 7 650 046 448 684 65°
N T 9 70° 032 240 8.81 70°
3 + B
8 T
T L - 3. Conclusion
I A
0 0.2 0.4 0.6 0.8 10 A simple gain and phase margins specified PI
time [sec] tuning formulae is proposed for the FOPDT processes

with small dead time. The proposed tuning formulae are
expected to be suitable for the auto-tuning speed control
of AC servomotors including PM synchronous motors.

Fig. 5 Transient response of various gain-phase margin
specifications (Am Om ) [experiment].
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Fig. 6 Auto-tuning performance for the setpoint changes and
frequent load disturbances.
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