1401, Bs-5

1

## Fabrication of oxide nanoparticles using oxidation of magnetic alloys in polyimide

Sung K. Lim, Keum Jee Chung, Young-Ho Kim, C. K. Kim and C. S. Yoon<sup>1,\*</sup>

Oxide nanoparticles embedded in a polyimide (PI) matrix was fabricated by oxidizing a layer of  $Ni_{80}Fe_{20}$  ( $Co_{80}Fe_{20}$ ) metal film sandwiched between two PI precursor layers. Oxide nanoparticles nucleated in the PI matrix as a by-product of the imidization process. The 3.5 nm-thick  $Ni_{80}Fe_{20}$  film was converted into a mono-layer of NiO oxide particles whose average size was 4.5 nm in diameter. When the metal film thickness was above 3.5 nm, a continuous layer of the metal film was found with selectively oxidized regions along the grain boundary. Similar observation was previously made when the  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> particles were produced using the same reaction [1,2]. In case of the  $Co_{80}Fe_{20}$  thin film, the oxide particles were composed of  $Co_3O_4$  with spinel structure. These  $Co_3O_4$  particles were, however, rather irregularly shaped with a wide size distribution whereas the NiO nanoparticles had spherical shapes with much narrower size distribution. X-ray photoelectron spectroscopy of oxide nanoparticles showed that the particles had a varying degree of metallic residue, suggesting that these nanoparticles could have metallic cores, surrounded by an oxide layer. Comparing with the  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> particles produced using the same procedure, relatively larger amount of metallic residue was detected from the NiO and  $Co_3O_4$  particles, which explains the higher magnetic moment measured from the NiO and  $Co_3O_4$  particles.





Fig 1. Cross-sectioal TEM images of the nanoparticles: (a) NiO, (b) Co<sub>3</sub>O<sub>4</sub>

## References

- [1] Sung K. Lim et al., J. Colloid Interface Sci.(in press)
- [2] Y. M. Chiang et al., Physical Ceramics (John Wiley & Sons, Inc., NewYork, 1997), p. 368.

<sup>&</sup>lt;sup>1</sup> Department of Materials Science and Engineering, Hanyang University, Seoul, 133-781, Korea

<sup>\*</sup>Corresponding author: e-mail: csyoon@hanyang.ac.kr, Phone: +82 2 2290 0384, Fax: +82 2 2290 1838