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Abstract

This study is an attempt to understand the birefringence and stress development in an injection molded disk. A
computer code was developed to simulate all three stages of the injection molding process — filling, packing and cooling
by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship
was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses

through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.
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1. Introduction

Compact optical disks have become increasingly used for
information storage in recent years[1,2]. The optical quality
of molded parts is affected by the occurrence of frozen-in
birefringence. The birefringence in molded parts is
recognized to appear from two main sources [3-7]. The first
is flow-induced birefringence, which is a consequence of
shear and normal stresses developing during cavity filling
and leading to orientation of molecular chains. The second
source of birefringence is nonequilibrium change of density
and shrinkage, and the viscoeastic and photo-viscoelastic
behavior of the polymer during the inhomogeneous rapid
cooling through the glass transition temperature resulting in
thermal birefringence. The birefringence of molded parts is a
consequence of the interplay of these phenomena. In the melt
state, the flow-induced birefringence is related to the flow
stresses through the well-known linear stress-optical rule [8].
The problem of flow-induced stresses and orientation is
modeled on the basis of the nonlinear viscoelastic
constitutive equation [3, 4,7, 9-20]. Isayev and Hieber [3]
were among the first who proposed theoretical approach to
relate the nonlinear viscoelasticity of polymers to the
development  of  frozen-in  molecular  orientation
(birefringence) in moldings.

Baaijens[21] and Flaman[22,23] used the compressible
Leonov model, which is a nonlinear viscoelastic model, to
simulate the injection molding cycle and the residual flow
stresses for a strip mold.
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Kwon et al. developed a numerical analysis system
using a finite difference method and studied the
distribution of birefringence in a center-gated disk after
injection molding and injection/compression molding
processing using the Leonov model [9-10].

In this study, we have developed a numerical
simulation program using finite element method for the
injection molding of a center-gated disk, considering all
three stages of the injection molding process — filling,
packing and cooling. The constitutive equation used
here was compressible Leonov model [24]. The PVT
relationship was assumed to follow the Tait equation.
The flow stresses were calculated using the Leonov
model. The flow-induced birefringence was related to
the flow stresses through the linear stress-optical law [8].
The results of numerical simulation were compared with
the corresponding experimental data [25]

2. Theory
2.1 Governing Equations
Very often the thickness of a cavity is much smaller
than planar dimensions. Therefore, in a simulation of flow
in a thin cavity, the velocity component in the gapwise
direction is assumed to be equal to zero.
The momentum equations in the absence of inertia

and body forces are:
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where x and y are planar directions and z is the gapwise

direction, and o represents the total stress.
The continuity equation for a compressible two-

dimensional flow is:

dp 0 k2 B
E+5(va)+ay(va)—0 3

where y, and vy, are velocity components in the x and
y directions and the density p is assume to follow the Tait

equation:
r -1
P,T)= THI-Clnjl + —— 4
AP, T) = py( ){ { B(T)]} 1C))
where C is a constant and B is a function of
temperature.

In a nonisothermal problem, the momentum and the
continuity equations are coupled with the energy equation.
Since the transverse dimension in a thin cavity is much
smaller than the planar dimensions, the thermal conductivity
in the planar dimensions is ignored compared to that in the

gapwise direction. Then the energy equation is:
or oT or )

PC,,( ey vyay) (K—)

where  (C,,x and @ are specific heat, thermal
conductivity, and dissipation function, respectively. The
dissipation function is given as
1|(12 11)+ter2—3] (Ga)

®= Zryostre +Z

where g:%(Vv+VvT). (6b)

y is the velocity vector, [, and [, are the
invariants of the elastic strain tensor C, , and 77,,4, and
s are described in the following paragrap__E.

By employing the Leonov constitutive model, the stress

field can be related to the velocity gradient field as follows:

=-P5+770 (Vv+Vv )+Z_Ck @

=

5]

where P is the pressure, S is a rheological parameter
lying between zero and one, and 77, and @, are the
k"' mode shear viscosity and relaxation time, respectively,
and C, is the elastic strain tensor for the k™ mode of
Leonov model. The parameters 7, and §, are temperature
dependent quantities based on a WLF temperature shift factor

(5, namely 7, (T) =7, (T ar/aro and
Hk(T) = Qk(To)'aT/aro

where

arg r<r,
= T -—
ar exp —_ _C.L(__._M T> Tg (8)
C2 + T - Tref
T ref is the reference temperature, T, % is the glass

transition temperature, and C, and C, are constants.
The zero shear rate viscosity function 77, is defined as

T=T0,/0-9)

For the two-dimensional analysis,
equations for the elastic strain tensor (), are:

the governing

DC, 6 . 1
T)k = A szk 0" (Cx.x,kz + sz,k2 - 1) (9)
D¢ * av 1
o "2 Ot g, ok * Gk 71 0O
D sz k 2 2
e -1 11
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DcC,, v,
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D C k 0 2%
T:zz_gxczz,k 26 Cyzlc(cyyk+czzk) (13)
Cu,k ny,k sz,k - sz.k ny,k - Cyz,k Cx.x,k =1 (14)
where DC;" is the substantial derivative of
with respect to time.
Dc, 0C; OCk OCs
= + 15
D a Y a " 3

The first and second differences of normal stresses,
(N, and N, , respectively), are defined as:

Ni=0u~—0uz (16)
N:=0,~0x a7

2.2 Numerical Formulations

Solution of the governing equations with a set of
appropriate boundary conditions provides the velocity and
the pressure profiles. The boundary of a cavity during
flow consists of a melt front, impermeable boundaries,
and a gate. In the melt front, one may assume that the
pressure is equal to zero and can use this as a reference
pressure. In the impermeable boundary region, the melt is
in contact with the boundary of the mold or insert, and the
normal velocity components vanish. The flow rate is
usually specified at the gate or at the entry. In addition,
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symmetry boundary conditions at the centerline and no slip
velocity at the solid wall of the cavity are assumed. Thus, the
boundary conditions may be summarized as:

vx=vy=0 at z=h (18)
0

AT (19)
oz oz

P =0 at the melt front (20)
Q = @, atthe gate or entry @n

Other boundary conditions on temperature are:

T=T, at z=h 22
or _ 0a z=0 23)
oz

By substituting Eq.(7) into the Eq.1) and (2), and
integrating the results with respect to z and using the
symmetric boundary conditions, Eq.(19), the velocity
gradients in the absence of normal forces are:

Ove (0P z (24)
0z oxp,
Ovy 0Pz (25)
Oz % n,
where:
1 yn
e =MS+ 75 %—acu,k (26)
E3
1 U
’7}’=770s+_av—;§0_kcyz’k (27)
oz
Integration of Eq. (24) and (25), using Eq. (18), leads to:
Ve = __a_.}i :'z_dz' (28)
&,
oP "
we- T e @)
y

with substitution of Eq.(28) and (29) into the Eq. (3), the
governing equation for pressure is:

oP 8 oP. 8, 0P _
G+ H -2~ (5,5) =0 30)
where:
_pde
G = [} Dz 31)
_p@2ylT
H = [§ 2z 62)
S, =[Gl pds )f (33)
s, =Gl pd )f (34)

Y

The control-volume finite element method with
triangular elements and linear shape functions is used to
solve Eq.(30), with G and H taken to be constant in each
control volume, S and §, to be constant in each

element.

2.3 Determination of the Elastic Strain Tensor and
Birefringence
The elastic strain tensor (, can be determined by
numerical integration of the governing equations, Eq. (9)
to (13). The initial values are d etermined from the fully
D¢,
t

developed steady-state solution, =0 , under

isothermal conditions. In order to the cumbersome
numerical calculations, the elastic strain C, is
determined in the streamwise coordinate system (r,&,z),
where r is the flow direction, & is perpendicular to r
in the counterclockwise direction, and Z is in the
gapwise direction. The corresponding elastic strains can
be calculated in the global coordinate by the coordinate
transformation [26]. The flow-induced birefringence in
the rz plane can be calculated, according to the stress-
optical law being

An=Cf ,/ Nii+4g? (35)

where 7 is the stress-optical coefficient at the melt

state.

3. Results and Discussion

The simulation was based on the experiment of Yoon
[25]. The material used is polystyrene (Styron
615APR/DOW) , and the mold is a center gated disk. The
diameter and thickness of the disk is 10.16 cm and 0.2 cm,
respectively. The molding conditions are as follows: melt
temperature is 225 °C, mold temperature is 40 °%c, and
volumetric flow rateis 23.8 ¢m® /s . The material data
for PS used in the simulation are listed in [24]. Due to
symmetry of the disk, only a quarter of the disk is
considered in the simulation.

The pressure traces at various radial positions for the
case of packing pressure of 15 MPa and packing time of
6.0 sec are shown in Fig. 1. Time 0.695 second marks the
end of filling stage and the beginning of the packing stage.
The simulation results indicate that at the start of the
packing stage, the pressure in the whole cavity jumps up
swiftly in about 0.07 second, giving almost the same
results with the e xperimental d ata [ 25]. As a whole, the
pressure traces predicted by using the compressible
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viscoelastic model here agreed very well with the measured
data [25].

The predicted transient d evelopment o f the first normal
stress difference &, — o, in the filling and packing stages
is shown in Fig. 2 and 3, respectively. In the filling stage, the
first normal stress difference increases with time. A peak
appears near the surface due to the development of a frozen
layer at the surface and the resulting d ecrease with time in
the available flowing channel. After 0.07 second in the
packing stage, the normal stresses at the central part of the
gap relax quickly since there is very little flow after 0.07
second and the temperature is still high. Later, when the
temperature becomes low and the relaxation time enlarges
(meaning that the induced stresses will not relax right away),
the normal stresses near the midplane grow again although
the flow becomes even smaller. It is noted that the normal
stresses near the cavity wall does not change during the
packing stage, since the temperature near the cavity wall is
lower than the glass transition temperature so that the stresses
have been frozen.

The predicted transient development of the second
normal stress difference gg — o, in the filling and
packing stages is shown in Fig. 4 and 5, respectively. The
shape of the distribution of g4 — o, is similar to that of
the first normal stress difference o, — &, , but the value of
Oes — O are one order of magnitude smaller than those of
Om~Cz-

Fig. 6 represents the gapwise distributions of shear stress
at various radial positions. Shear stress has an almost linear
gapwise distribution with a slope depending on the proximity
to the melt front. It decreases closer to the melt front.

Fig.7 shows the gapwise distribution of the first normal
stress difference at various radial positions at the end of
filling. The peaks continually decrease in magnitude and
move toward the wall with increasing radial positions from
the gate.

The predicted gapwise flow birefringence distribution at
various radial positions at the end of filling stage is shown in
Fig. 8. The birefringence shows a maximum around
z/h = 0.7 ~ 0.8, like the first normal stress difference. It is
noted that although the shear stress varies monotonically with
Z , the birefringence exhibits a peak away from the wall, due
to the dominant effect of the first normal stress difference.

The predicted gapwise birefringence distribution at
various radial positions at the end of packing stage with a
packing pressure of 15 MPa are shown in Fig. 9. There are
two peaks in the birefringence distribution; one near the

surface produced in the filling stage, the other near the
center produced by the additional flow in the packing
stage. The inner peak also decreases in magnitude as the
radial position increases from the gate.

Without the packing stage, the predicted flow
birefringence distributions at the end of cooling stage are
given in Fig. 10. The birefringence at the core is zero due
to the fast relaxation of the chain orientation right after
filling. Fig. 11 is the corresponding e xperimental r esults
measured by Yoon [25]. It is seen that the simulation, in
good agreement with shows
appreciable birefringence at the wall and a peak which

the experimentation,

moves toward the wall with increasing radial positions
from the gate.

The predicted gapwise birefringence distributions at
the end of cooling stage with a packing pressure of 15
MPa are compared with experimental measurements in
Fig. 12 and 13, respectively. The predicted birefringence
is in good agreement with the experimental results such as
the locations and magnitude of the inner peaks. However,
some differences exist, such as the minimum value in the
troughs, and the magnitude near the surface. Possible
reasons may be due to inaccuracy in shift factors for
viscosity and relaxation time at low temperatures.

The radial dependence of gapwise-averaged

birefringence < pg—n, > = %j:(n%. -n,)dz ) is

shown in Fig. 14. IS a monotone

decreasing function of radial p osition. S imilar data have

been reported by Greener [27]. It is seen from the
simulation results that packing makes < pgy—n,, >

< nge = N >

increase significantly near the gate. Since there is less and
slower material flow at larger radial positions in the
packing stage, a smaller increase in < pgy—n, > at

larger radial position due to packing is obtained.
4, Conclusions

A computer code which used the compressible
Leonov model was developed to simulate the injection
The simulation was verified with
[25] of
pressure traces, gapwise flow-induced birefringence in

molding cycle.
corresponding experimental measurements
center- gated disk. The simulation showed that

1. The predicted birefringence was in good agreement
with the experimental results such as the locations and
magnitude of the peaks.
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2. When the packing pressure of 15 MPa was applied,
there were two peaks in the birefringence distribution; one
near the surface produced in the filling stage, the other near
the center produced by the additional flow in the packing
stage. The inner peak decreased in magnitude as the radial
position increased from the gate.

3. With the packing pressure,
birefringence increased significantly near the gate. However,

gapwise-averaged

increment of the birefringence at larger radial position was
small, since there was less and slower material flow at larger
radial positions in the packing stage.
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Fig.1 Pressure traces at various radial positions. Molding
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Fig.2 Predicted transient gapwise distributions of the first
. normal stress difference ( g, — o, ) at r=3.07 during
filling stages.
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Fig.3 Predicted transient gapwise distributions of the first
normal stress difference (o, — o, ) at =3.07
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Fig.4 Predicted transient gapwise distributions of the second
normal stress difference (ogy — o, ) at r=3.07 during
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Fig.5 Predicted transient gapwise distributions of the second
normal stress difference ( gg — o, ) at r=3.07 during

packing stages.
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Fig.6 Predicted gapwise distribution of shear stress 7,
at various radial positions at the end of filling

(t=0.694 s).
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Fig.7 Predicted gapwise distribution of the first normal
stress difference ), at various radial positions at the
end of filling (t=0.694 s).
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Fig.8 Predicted gapwise distribution of birefringence
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Fig.9 Predicted gapwise distribution of birefringence Apn
at various radial positions at the end of packing (t=6.74 s).
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Fig.10 Predicted gapwise distribution of birefringence An
at various radial positions at the end of cooling when no
packing pressure is applied.
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Fig.11 Measured gapwise distribution of birefringence Ap
at various radial positions at the end of cooling when no
packing pressure is applied.
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Fig.12 Predicted gapwise distribution of birefringence
An  at various radial positions at the end of cooling
with packing pressure of 15 MPa.
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Fig.13 Measured gapwise distribution of birefringence
Apn  at various radial positions at the end of cooling
with packing pressure of 15 MPa
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Fig.14 Predicted radial profiles of gapwise-averaged
residual birefringence < pgy — n,, > Wwith packing
pressures of 0 and 15 MPa, respectively.
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