A Method Processing Missing Values for Data Mining based on Artificial Neural Network

데이터 마이닝을 위한 신경망 이용 결측 값 처리 방법

  • Published : 2003.04.01

Abstract

실세계의 많은 데이터는 결측 값들을 포항하고 있기 때문에 데이터 마이닝 시스템에 완벽한 데이터를 제공하기는 불가능하다. 또한 결측 값이 존재하는 대용량의 데이터를 추천시스템에 적용하여 분석하고자 할 경우, 정확성이 떨어지는 결과를 초래할 수 있다. 따라서 데이터에 결측 값이 존재할 경우 입력 데이터를 사전에 보간하는 전처리 방법이 필요하다. 이러한 기존의 보간 전처리 방법에는 결측 값 속성을 삭제하거나 대치하는 방범이 대표적이나. 삭제 방법은 결측 값이 존재하는 데이터를 제거하는 방법으로 중요속성 삭제 및 데이터 손실을 유발하는 단점이 있어 일반적으로 결측 값을 다른 값으로 처리하는 대치 방범이 널리 사용된다. 본 논문에서는 전처리 방법 중 결측 값을 처리하는 가장 일반적인 대치 방법과 신경망을 이용한 평가 예측 처리 방법을 소개한다. 또한 신경망을 이용 결측 값을 대치하는 새로운 모델을 제안하고, 각각의 결측 값 처리방법을 비교 분석한다.

Keywords