한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
- /
- Pages.449-451
- /
- 2003
- /
- 1598-5164(pISSN)
분류를 위한 퍼지 규칙의 소속함수 학습
Learning Memebership Functions of Fuzzy Rules for Classification
초록
패턴 분류 문제에서 수치적 속성일 경우 퍼지 적용은 효과적인 결과를 보인다는 것은 많은 연구를 통해 알려졌다. 하지만 퍼지를 적용한 패턴분류의 결과는 소속함수의 모양과 개수에 따라 크게 영향을 받는다는 문제점을 가지고 있다. 따라서 이러한 문제점은 퍼지를 쉽게 응용분야에 적용시키지 못하는 원인이 된다. 따라서 본 논문에서는 자동으로 소속함수를 정의할 수 있는 소속함수 학습 방법을 제안한다. 제안한 방법1)은 Penalty연산과 Reward연산을 통해 소속함수가 학습되고 Coverage연산을 통해 소속함수 개수가 학습된다. 제안된 방법의 가능성을 확인하기 위해 벤치마크 데이터 중 Iris, Appendicitis, Breast Cancer를 사용하여 기존 방법과 비교한다.
키워드