Modeling and Simulation of Policy-based Network Security

Won-young Lee® and Tae-ho Cho”

School of Information & Communications Engineering, Sungkyunkwan University
300 Cheoncheon-dong, Jangan-gu, Suwon, Kyeonggi-do 440-746, South Korea
Tel: +82-31-290-7221, Fax: +82-31-290-7211, E-mail: sonamu@ece.skku.ac.kr

® School of Information & Communications Engineering, Sungkyunkwan University
300 Cheoncheon-dong, Jangan-gu, Suwon, Kyeonggi-do 440-746, South Korea
Tel: +82-31-290-7221, Fax: +82-31-290-7211, E-mail: taecho@ece.skku.ac.kr

Abstract

Today's network consists of a large number of routers and
s:zrvers running a variety of applications. Policy-based
retwork provides a means by which the management
process can be simplified and largely automated. In this
paper we build a foundation of policy-based network
riadeling and simulation environment. The procedure and
structure for the induction of policy rules from
viinerabilities stored in SVDB (Simulation based
1" dnerability Data Base) are developed. The structure also
transforms the policy rules into PCIM (Policy Core
liformation Model). The effect on a particular policy can
be tested and analyzed through the simulation with the
PZIMs and SVDB.

K2ywords:

Sccurity Policy; PBNM
)Management); network
s :nulation; Data Mining

(Policy-based
security; DEVS

Network
formalism,;

Introduction

F'resent-day networks are large complex systems consisting
of a variety of elements, which can come from a variety of
vendors. But it is more difficult than before for human
2Cministrators to manage more and more new network
devices. The challenges facing the enterprise managers
include network congestion, network complexity and
szcurity. A new wave of multimedia applications now
begins to enter into corporate Intranets —voice and video
czn hardly wait to join the bandwidth fray. Every network
i» made up of a variety of elements, but they must still work
together. Because of this heterogeneity and the lack of
complete standardization, managing a network with more
than a handful of elements can require a significant amount
of expertise. The network manger is faced with the difficult
task of meeting internal and external security requirements
waile still providing easy and timely access to network
r:sources to authorized user. The solution to these issues

lies in policy-based management [1]. A network manager
creates policies to define how resource or services in the
network can (or cannot) be used. The policy-based
management system transforms these policies into
configuration changes and applies those changes to the
network. The simplification and automation of the network
management process is one of the key applications of the
policy framework [2].

Since evaluating the performance of a security system
directly in real world requires heavy costs and efforts, an
effective alternative solutions is using the simulation model
{3]1. The simulation models are constructed based on the
DEVS formalism and using these simulation models the
security models are constructed. We construct the SVDB
for analyzing the vulnerabilities. SVDB has vulnerabilities
of systems and policy information that can be used by
security systems through SVDB interface for the induction
of policy rules. We have simulated to verify the
performance of the rule induction using SVDB for DOS
attack and Probing attack.

The rest of the paper is organized as follows. Section 2
briefly represents the major theories and systems related to
this research, section 3 describes the models for the
simulation. Section 4 shows the coordination between the
policy-based framework and SVDB, section 5 represents
the execution of simulation and results. Finally, section 6
contains the conclusion.

Background

This section briefly describes the background related to the
current research. Section 2.1 represents the DEVS
formalism based on which the simulation models are
defined. Section 2.2 shows the policy-based framework,
section 2.3 represents the policy representation. Section 2.4
shows the Vulnerability Database

DEVS formalism

The DEVS formalism [4,5] is a theoretically well grounded

-155-

means of expressing hierarchical, modular discrete-event
models. In DEVS, a system has a time base, inputs, states,
outputs and functions. The system function determines next
states and outputs based on the current states and input. In
the formalism, a basic model is defined by the structure:

M=< X7 S’ Y: Sint’ sexb }") ta >

where X is an external input set, S is a sequential state set,
Y is an external output set, 8y, is an internal transition
function, 6., is an external transition function, A is an
output function and t, is a time advance function. A coupled
model is defined by the structure:

DN=< D, {Mi}’ {Ii}5 {Zi)j}’ select >

where D is a set of component name, M; is a component
basic model, I; is a set of influences of I, Z;,; is an output
translation, select is a tie-breaking function. Such a coupled
model can itself be employed in a larger coupled model.
Several basic models can be coupled to build a more
complex model, called a coupled model.

Policy-based Framework

The general policy-based administration framework we
present can be considered an adaptation of the IETF policy
framework to apply to the area of network provisioning and
configuration [6-9]. The policy architecture as defined in
the IETF consists of four basic elements (as shown in Fig.

1).

Policy Management Tool

Policy communication

protocols Policy

Repository

Policy Decision Point

Policy communication Policy Enforcement Point

protocols

Figure 1 - The IETF policy framework

PMT (Policy Management Tool). The PMT is used by an
administrator to input the different policies that are active in
the network. The PMT takes as input the high-level policies
that a user or administrator enters in the network and
converts them to a much more detailed and precise
low-level policy description that can apply to the various
devices in the network.

PDP (Policy Decision Point): The PDP is a process that
makes decisions based on policy rules and the state of the
services those policies manage. The PDP is responsible for
policy rule interpretation and initiating deployment. Its
responsibilities may include trigger detection and handling,
rule location and applicability analysis, network and
resource-specific rule validation and device adaptation

functions. In certain cases, it transforms and/or passes the
policy rules and data into a form and syntax that the PEP
(Policy Enforcement Points) can accept, leaving the
implementation of the policy rules to the PEP.

PEP: The PEP are the network devices that actually
implement the decisions that the policy decision points pass
to them. The PEP are also responsible for monitoring any
statstics or other information relevant to its operation and
for reporting it to the appropriate places.

Policy Repository: The Policy Repository is used to store
the policies generated by the management tool. Either a
directory or a database can store the rules and policies
required by the system. In order to ensure interoperability
across products from different vendors, information stored
in the repository must correspond to an information model
specified by the Policy Framework Working Group.

Policy Communication Protocols: Different protocols are to
be used for various parts of the architecture (e.g., COPS or
SNMP can be used for PDP-PEP communications). A
repository could be a network directory server accessed
using LDAP.

Policy Representation

The high-level and low-level policies required for network
management can be specified in many different ways [2].

From a human input standpoint, the best way to specify a
high-level policy would be in terms of a natural-language
input. Although these policies are very easy to specify, the
current state of natural-language processing needs to
improve significantly before such policies can be expressed
in this manner. The next approach is to specify policies in a
special language that can be processed and interpreted by a
computer. When policies are specified as a computer
interpretable program, it is possible to execute them.
However, in general it is quite difficult to determine if the
policies specified by two different programs are mutually
consistent.

A simpler approach is to interpret the policy as a sequence
of rules, in which each rule is in the form of a simple
condition-action pair (in an if-then-else format). The rules
are evaluated on specific triggers, such as the passage of
time or the arrival of a new packet within the network. The
IETF has chosen a rule-based policy representation in its
specification. IETF Policy Framework WG works
especially on the “condition action” part to define Policy
Core Information Model (PCIM)[10] for the representation
of policy information. The PCIM is the object-oriented
information model for representing policy information. This
model defines representing policy information and control
of policies, and association classes that indicate how
instances of the structural classes are related to each other.
Policies can either be used in a stand-alone fashion or
aggregated into policy groups to perform more elaborate
functions. Stand-alone policies are called policy rules.
Policy groups are aggregation of policy rules, or
aggregations of policy groups, but not both. Fig. 2
illustrates the inheritance hierarchy for PCIMe (PCIM

-156 -

extensions) [11].

An 1lternative specification of policies is to represent them
simmylv as entries in a table. The table consists of multiple
attr butes. Some of these attributes constitute the condition
par!, and others constitute the action part. Such a tabular
reg: esentation is rich enough to express most of the policies
thal can be specified with a rule-based notation.
Fu- hermore, it is easier to analyze for dominance and
corizency.

1
Mz ag:«[Element (abstract) ! Collection(abstract)
- 9’ cy (abstract) t | LpolicyRoleCollection(abstract)
r—olicySet(abstract) !
PolicyGroup gedSystemElement (abstract)
PolicyRule ! “LogicalElement (abstract)

- 3olicyCondition (abstract) b I-System (abstract)
—PolicyTimePeriodCondition ! T’_ AdminDomain (abstract)
—VendorPolicyCond.it.lon ! ReusablePolicyContainer
+—SimplePolicyCondition ' b
CompoundPoticyCondition (abstract)

CompoundFilterCondition | PolicyRepository

- 2olicyAction (abstract) ! FilterEntryBase(abstract)
—VendorPolicyAction ' TIoHeaderFilt
i—SimplePolicyAction ' 8%2?1 erier
'—CompoundPolicyAction h)) lter

- PolicyVariable(abstract) | TFilterList
}:PolicyExplicitVan’able(absu'act) :

PolicylmplicitVariable(abstract) 1
] Q/ubpw of more specific classes) |

“--PolicyVariable(abstract) i

L—(subtree of more specific classes) !

Figure 2 - Class Inheritance Hierarchy for PCIME
Vu nzrability Database

A -uiaerability is a condition or weakness in (or absence
of security procedures, technical controls, physical
co trols, or other controls that could be exploited by a
thr al [12].

Tt ‘heme of vulnerabilities analysis is to devise a
cle sification, or set of classifications, that enable the
an:lyst to abstract the information desired from a set of
vul1erabilities. This information may be a set of signatures,
for intrusion detection; a set of environment conditions
ne: essary for an attacker to exploit the vulnerability; a set
of :cding characteristics to aid in the scanning of code; or
ot'rr Jdata [13].

Gu/ernment and academic philanthropists, and some
coipanies, offer several widely used and highly valued
an: onncement, alert, and advisory services for free. Each of
the se organizations referred to the same vulnerability by a
di: e:ent name. Such confusion made it hard to understand
wh it vulnerabilities you faced and which ones each tool
wi. i looking for- or not looking for. The MITRE
Co peration began designing a method to sort through the
co! fusion. It involved creating a reference list of unique
vuiwrability and exposure names and mapping them to
ap: rooriate items in each tool and database. We use CVE
natie: in a way that lets a security system crosslink its
in: srmation with other security systems [14].

The Structure of Target Network and
Simulation Model

Fig. 3 shows target network architecture.

Unix Server
Unix Server Q Scanner
with Linux Server

Scanner

Gateway

Firewall]
T Policy Server with IDS
1 with PMT, POP, PR ool |

Subhet_4

Router

t | Unix Server
with IDS
Unix Server
with
Scanner

Windows
NT Server
with IDS

Linux Server B
with Scanner i

Figure 3 - Structure of target network

Fig. 3 shows the structure of the target network that has five
subnets; subnet 1, subnet 2, subnet 3, subnet4 and
subnet 5. The types of component models in the network
are Policy Server, IDS, Firewall, Router, Gateway,
Vulnerability Scanner model. Each subnet has unix server,
linux server, windows NT server and etc. These models are
constructed based on the DEVS formalism.

Network architecture

The System Entity Structure (SES){4] is a knowledge
representation scheme that combines the decomposition,
taxonomic, and coupling relationships. The entities of the
SES refer to conceptual components of reality for which
models may reside in the model base. Also associated with
entities are slots for attribute knowledge representation. An
entity may have several aspects, each denoting a
representation. An entity may also have several
specializations, each representing a classification of the
possible variants of the entity.

Fig. 4 is a system entity structure for the overall network
model of Fig. 3. Network_Simulation model is decomposed
into Network and EF. EF model is decomposed into
Generator model and Transducer model. Generator model
generates network input packets. Transducer model
measures a performance indexes of interest for the target
system.

-157 -

LEGENDS NetworkTSimulation
| ; decomposition |
||: specialization ’ F

Network

Generator Transducer

Gatcway Subnet] Policy Component

Policy_ Interface_
Router Firewall o | Framgwork For_SVDB

]]
outer IDS Scanner Subnet2Subnet4 Subnet5
PMT PDP

Filter Proxy Router IDS

e

Inbound Outbound
_Filter _Filter Router IDSScannerSubnet3 Rule Rule Basic_
Transformer Induction Transformer

Router IDS Scanner

Protocol Address Port
Router .IDS. Scanner

Figure 4 - SES of the target network

SVDB

SVDB has the specific information that can be used by
security agents as well as The common information of
vulnerability of system. SVDB has four tables;
vulnerability information [15], packet information, system
information and references information.

Table 1 - Tables of SVDB

Table Field

Vulnerability|Vulnerability Name(CVE), Summary,
Information [Published, Vulnerability Type, Exploitable
Range, Loss Type, Vulnerable Software and
Versions

Packet IP flags, TTL, Protocol, Source IP, Destination
Information [IP, IP options, ICMP code, ICMP type, Source
port, Destination port, Sequence number,
Acknowledgement number, TCP flag, Offset,
Payload size, URL contents, Contents, CVE
[Name

System Vulnerable Software and Versions

Information .
Vendor, Name, Version

References [Source, Type, Name, Link
Information

SVDB also has particular parts for accuracy and efficiency
of security agents. The payload size is used to test the
packet payload size. It may be set to any value, plus use the
greater than/less than signs to indicate ranges and limits.
The offset modifies the starting search position for the
pattern match function from the beginning of the packet
payload. The payload size and offset have the added
advantage of being a much faster way to test for a buffer
overflow than a payload content check. URL contents allow
search to be matched against only the URL portion of a
request. Table. 1 shows tables of SVDB for the simulation.

System Modeling

Policy Framework model

Fig. 5 shows the structure of Policy Framework model.

{ Policy Framework h

PMT [PDP_}

'| Supervision I

—IPolicy_Transformation
Policy_Distributor

Figure 5 - Structure of Policy_Framework Model

esource_Discovery]

Validity_Check

Policy "Framework model is divided into PMT model and
PDP model. PMT model 1is composed of
Resource Discovery model and Validity Check model.
Resource_Discovery model determines the topology of the
network, the users, and applications operational in the
network. In order to generate the configuration for the
various devices in the network, the capabilities and
topology of the network must be known. Validity Check
model consists of various types of checks: Bounds checks,
Consistency checks, Feasibility checks.

PDP model is composed into Supervision model,
Policy Transformation model and Policy_Distributor
model. Supervision model receives events from network
devices and monitors network usage. The PDP can use this
information about the network to invoke new policy-based
decisions. Policy Transformation model translates the
business-level policies into technology-level policies that
can be distributed to the different devices in the network.
Policy Distributor model is responsible for ensuring that
the technology-level policies are distributed to the various
devices in the network.

IDS model

Fig. 6 shows the structure of IDS. IDS model is divided into
Detector model, Response_Generator model and Logger
model.

[DS 1

Response_Generato

l"Pattern_Matche

\» Analyzer Logger

Figure 6 - Structure of IDS Model

-158-

Detector model is composed of Pattern_Matcher model
and Analyzer model. Pattern_Matcher model is a rule-based
expert system that detects intrusions through pattern
matching procedure between packet data and rules.
Analyzer model is a statistical detection engine that detects
irfrusions by analyzing system log and audit.
Response_Generator model determines a response
a:zcording to the detection result of Detector model and
szads a message. Logger model records all information of
detection procedure in the log file.

Collaboration between SVDB and
Folicy-based Framework

Ttis section describes a collaboration between SVDB and
policy-based framework. The policy management tool in
the common policy-based framework is used by the
aiministrator but we have appended the some module
interface for the more automation control. The policy-based
fremework in the proposed system is accessed by the
aministrator, SVBD and intrusion detection system. Fig. 7
shows the structure and function of SVDB interface.

——_Policy Framework v PolicyRule
- _PR_J)_PDP Ij [_PEP_JlpoticyCondiffon PuticyAction
g s o

PMT]
| I
- -
————{DB Interface Module
s IfS:FIowD_irection =)~)
Rule Transformer IPFlagbit = MF) ~
e
[Rule_Induction S100) oo cecen
=TT THE
[Basic Transformer |\ Filtering(CurrentSrcIp,IN)
T‘r can /

DBMS

Figure 7 - Structure and function of SVDB interface

*DB(int)->ODBC(String)
~>0DBC API(int)

T':e main function of each component is as follows:

» Basic_Transformer: Basic Transformer provides a
connection of DB, data type converting and basic type
¢.12cking.

» Rule_Induction : Rule_Induction builds a decision tree
from DB using tree induction algorithm. Rule Induction
scrves as a postprocessing of tree induction. A rule is
constructed by a particular path from root to a leaf in the
d:cision tree.

» Rule_Transformer: Rule Transformer provides a
transformation between a policy rule and a class of PCIMe.
P:licy conditions, policy actions, a variable and a value are
compatible with the type of each class in PCIMe.

P:licy rule induction from SVDB

A well-known tree induction algorithm adopted from
machine learning ID3, which employs a process of

constructing a decision tree in a top-down fashion. A
decision tree is a hierarchical representation that can be
used to determine the classification of an object by testing
its values for certain properties. The main algorithm is a
recursive process. At each stage of this process, we select a
property based on information gain calculated from the
training set. The skeleton of the ID3 algorithm is shown
below [15].

Algorithm ID3

Input. a set of example

Output: a decision tree

Method.

ID3_tree (examples, properties)

If all entrieg in examples are_in the same
category of decision variable

Return a leaf node labeled with that category
Else
Calculate information gain;
%g%gqt a property P with highest information
Assign root of the current tree = P;
Assign properties = properties - P;
for each value V of P
Create a branch of the tree labeled with V;

Assign examples V = subset of examples
with values V for property P ;

Append ID3_tree (example_V, properties) to
branch V
The decision tree can be constructed as shown in Fig. 8 for
the simulation.

Protocol

//\\

P ICMP TCcP uopP

ICMP-Code Port Port

/NN /N

sescscece 2 25 80 coesveess

PayloadSize

URL Contents
N /I
<20 =>20

IP Flagbit

J\

Figure 8 - ID3 tree constructed

In the decision tree, a leaf node denotes the attack name
while a non-leaf node denotes a property used for decision.
Rule induction can be used in conjunction with tree
induction. A rule can be constructed by following a
particular path from root to a leaf in the decision tree, with
variables and their values involved in all the nonleaf nodes
as the condition, and the classification variable as the
consequence.

Converting a policy rule into PCIMe

The policy rule is transformed into PCIMe. Policy
conditions, policy actions, a variable and a value are
converted into the type of each class in PCIMe. To illustrate
the basic idea of converting a policy rule into PCIMe, here
we use a simple example.

~159-

PolicyRule

Name: “Jolt2Policy
PolicyKeywords: “Exceptional Conditon Error”

PolicyActionlnPoli%

PolicyConditionInPolicyRule

CompoundPolicyCondition

Name: “Jolt2PolicyCondition”
ConditionListType: CNF

PolicyConditionInPolicyCondition

PolicyAction

Name: “Jolt2PolicyAction”

PolicyActionInPolicyAction

PolicyFilterAction
Name: “FilterAction’
ActionData: “CurrentSrcIP”
FlowDireciton: “IN”

SimplePolicyCondition

SimplePolicyCondition

SimplePolicyCondition

PolicyMonitorCondition

Name: “FlowCondition”

Name: “IPFlagbitCondition”

Name: “IPPayloadSizeCondition”

Policy\JariabIe
lnSimplePolicyCondition

Policy\Jariable
InSimplePolicyCondition

Policy\)ariable
lnSimplePolicyCondition

PolicyFlowDirectInVariable

PolicyIPFlagbitVariable

PolicyIPPayloadSizeVariable

Name: “FlowDirect”
ValueType: PolicyStringValue

Name: “IPFlagbit”
ValueType: PolicyBitStringValue

Name: “IPPayloadSize”
ValueType: PolicylntegerValue

1
ExpectedPolicyValueForVariable
l

|
ExpectedPolicyValueForVariable

|
ExpectedPolicyValueForVariable
|

PolicyStringValue

PolicyBitStringValue

PolicylntegerValue

Name: “MonitorCondition”
BasisUnit: Second
NumberQfPacket: 100

Name: “FlowDirectValue”
String: “IN”

Name: “IPFlagbitValue”
BitString: 001(MF)

Name: “IPPayloadSizeValue”
Integer: 20

Figure 9 - Policy rule of the jolt2 attack

Jolt2 attack is a type of DOS attacks. It slices a IP datagram
into small pieces and then transmits the packets of these
pieces to the target system. As a result, the utilization of the
CPU reaches close to 100 percents and can't handle any
other processes. We obtain the following rule of jolt2 attack
through rule induction: “IF (FlowDirection = IN) A
(IPFlagbit = MF) A (IPPayloadSize <= 20)
A (NumOfPacketPerSecond > 100) THEN
Filtering(CurrentSrcIP, IN)”. Fig. 9 shows an object model
to represent the security policy for jolt2 attack. The classes
comprising the PCIMe are intended to serve as an
extensible class hierarchy (through specialization) for
defining policy objects that enable network administrators
and policy administrators to represent policies of different
types. The PolicylPPayloadsizeVariable class,
PolicyMonitorCondition and PolicyFilterAction are
inserted into the inheritance hierarchy the original PCIMe
classes. This object model is distributed to network devices
to be enforced, and is used to map into proper security
configurations.

Simulation Result

Two main categories of attacks were simulated, they are:
DOS: smurf, ping-of-death, jolt2.

Probing: ping-sweep, port-scan.

The blocking ratio, false positive and false negative error
ratio are measured for the performance indexes in the
simulation

Blocking Rate of DOS attack

80

70 :
S | With
oo ; SVDB
‘S50 .
) I = Withou
w0 40 i SVDB
g
2% i
@ i

10 i

o E " s H

0 0.05 01 015 0.2

False Positive Error Ratio(%)

Figure 10 - False Positive Error Ratio of DOS attack

Blocking Rate of DOS attack
80 y
¥
70 }
I e | —e- With
g\;m 3 T = " SvbB
Es0 b 7 .
3 L * Without
= 40 L SVDB
a0 P
Q9 Piad
220 | e
@ Jte
ot/ -
o
20 25 30 35 40

False Negative Error Ratio(%)

Figure 11 - False Negative Error Ratio of DOS attack

-160 -

Blocking Rate of Probing attack

e f e With

™ svor
|

1~ Without
| SVDB

0 0.05 0.1 0.15 2
False Positive Error Ratio(%)

Fizure 12 - False Positive Error Ratio of Probing attack

Blocking Rate of Probing attack

P ——— e With
» SVDB

4 * Without
SVDB

14 13 22
False Negative Error Ratio(%)

Yigure 13 - False Negative Error Ratio of Probing attack

F g 10, 11 are the case of DOS attack and Fig. 12,13 are
tte case of Probing attack. The result shows that the
b ocking ratio of the system with SVDB is higher than the
b ocking ratio of system without SVDB. The false
r.:gztive and positive error ratio of system with SVDB are
sc lower than the false negative and positive error ratio of
~slem without SVDB. This phenomenon related to the
Icitional information in SVDB. The proposed system
itests effectively attacks through the additional system
“fcrmation in SVDB. Fig. 10 shows that the false positive

T M oA Y e

. 113 increase in the error ratio is due to the fact that the
I gizr the security level, the more error security systems
r al:2 in that case. But the blocking ratio of probing attack
t. s fixed false positive error ratio, and the blocking ratio of
r obing attack is higher than the blocking ratio of DOS
atack. Probing attacks have relatively limited variance
b cause they all involve making connections to a large
ri.xtoer of hosts or ports in a given time frame. On the other
kind, DOS has a wide variety of behavior because they
e: pioit the weaknesses of a large number of different
i twork or system services. As a result, the security system
c:n detect a high percentage of probing attack. These
r:sults means that proposed system allows to have
s nplified network management and provide the added
a: cusacy and efficiency of security systems.

Conclusion

V.e presented a policy-based network simulation
e vionment for the security system. The security system
niikes a various network situations-the policies should be
a-pied to change the network states. These situations
ir ;Tude the response of intrusion detection system and
p iy change by the firewall, etc. We also proposed the

1cr ratio is increased by strengthening of the security level.

structure for policy rule induction from vulnerabilities
stored in SVDB. The security policy rule provides the
added accuracy and efficiency in safe guarding the network.
The simulation environment can be a good tool to analyze
or test a policy, it can help a manager to know that if the
applied policies work as expected, and further, it can
optimize use of the current network infrastructure.

Our future work includes simulation on diverse types of
intrusions, and devising a user interface to verify the policy.

Acknowledgments

This work was supported by grant
No.R05-2002-000-00107-0 from the Basic Research
Program of the Korea Science & Engineering Foundation.

References

[1] Wang Changkun, (2000). "Policy-based network
management,” Communication Technology Proceeding,
2000. WCC-ICCT 2000, International Conference on,
Vol. 1. pp. 101-105. '

[2] Verma, D.C. (2002). "Simplifying network
administration using policy-based management,"
Network, IEEE, Vol 16, pp 20-26, March-April.

[3] F. Cohen. (1999). "Simulating Cyber Attacks, Defences,
and Consequences," Computer & Security, Vol.18, pp.
479-518,

[4] E. D. Zwicky, S. Cooper and D. B. Chapman. (2000).
Building Internet Firewalls second edition :O'reilly &
Associates.

[5] T.H. Cho and Bernard P. Zeigler. (1997). "Simulation
of Intelligent Hierarchical Flexible Manufacturing:
Batch Job Routing in Operation Overlapping," IEEE
trans. Syst. Man, Cyber. A, Vol. 27, pp. 116-126.

[6] Dinesh C. Vema. (2001). Policy-Based Networking:
Architecture and Algorithm, New Rider.

[71Dave Kosiur. (2001). Understanding Policy-Based
Networking, John Wiley & Sons, Inc.

[8] M. Stevens. (1999). "Policy Framework". Internet Draft,
draft-ietf-policy-framework-05.txt.

[9] B. Moore, et al. (2000). "Policy Core Information
Model-Version 1 Specification," IETF RFC 3060.

[10]B. Moore, et al. (2003). "Policy Core Information
Model (PCIM) Extensions,” IETF RFC 3460.

[11]NIST. (1995). "An Introduction to Computer Security :
The NIST Handbook," Technology Administration,
U.S.A.

[12IM. Bishop. (1999). "Vulnerabilities Analysis,"
Proceedings of the Recent Advances in Intrusion
Detection pp. 125-136.

[13]Robert A. Martin. (2001). "Managing Vulnerabilities in
Networked Systems," IEEE Computer, Vol.34, No.11,

-161 -

pp. 32-38.
[14]http://icat.nist.gov, ICAT Metabase

[15]Zhengxin Chen. (2001). Data Mining And Uncertain
Reasoning: An Integrated Approach, John Wiley &
Sons

-162 -

