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Due to the increasing use of very large databases, mining useful information and implicit knowledge
from databases is evolving. However, most conventional data mining algorithms identify the relationship
among features using binary values (TRUE/FALSE or 0/1) and find simple IF-THEN rules at a single
concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen
in real-world database and applications.

In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal
knowledge base from database. A causal knowledge base construction algorithm based on Fuzzy Cognitive
Map (FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting
implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human
subjects and will help to increase the flexibility for supporting users in making decisions or designing the
fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to
achteve this purpose.

The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to
the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the
causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy
association rules from a specified database, demonstrating the effectiveness of the proposed algorithm.

Keywords: data mining, association rule, fuzzy membership functions, fuzzy cognitive map, causal
knowledge base

1. Introduction

Data mining is one of hot topics in the field of
knowledge discovery and management (Bonchi, et

al., 2001; Chakrabarti et al., 1999; Changchien &.

Lu, 2001; Hui & Jha, 2000; Lee et al., 2002; Song
et al.,, 2001). The association rule extraction
mechanism, which was proposed by Agrawal et
al.(1993), was a most popular tools to execute the
data mining. Given a set of transactions, where each
transaction is a set of item, an association rule is an
expression of the form X = Y. X and Y means the
sets of items. An example of an association rule is:
“20% of transactions that contain beer also contain
diapers; 10% of all transactions contain both these
items.” Here 20% is called the confidence of the
rule, and 10% the support of the rule.

However, the most critical problem with data
mining is the poor interpretability of mining results.
In addition, interpreting the mining results is very
difficult for general decision markers because they
require high expertise in data mining or expert
systems, etc (Lee et al., 2002). As a result, basic
association rules couldn’t represent the customer’s
implicit knowledge. In this sense, we propose a
three-phased fuzzy and association rule-based
causal knowledge based construction mechanism.

2. Methodology

Our proposed causal knowledge base
construction mechanism was based on fuzzy
membership function, association rule mining and
fuzzy cognitive map (FCM). Which was aimed at
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enriching the reasoning ability and justification
quality of knowledge based expert systems. The
proposed mechanism consists of the three phases-
fuzzy membership function, extraction of the fuzzy
association rules, and development of the causal
knowledge base. Figure 1 shows the research
methodology.
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Figure 1. Research methodology

The first phase is to adapt the fuzzy membership

function to traditional databases. In the second
phase, we applied the association rules mining
technique to extract the relationships among
attributes. Final stage of the proposed hybrid causal
knowledge base construction mechanism is to apply
the FCM to the fuzzy association rules and

construct the causal knowledge base.

3. Implementation

To prove the quality of hybrid causal knowledge
base construction mechanism, we used credit data
stored in U.C. Irvine’s machine learning data
repository. Totally 690 data was used for validation.
Which was composed of 15 input variables and 1
output variable (attribute). The prototype system
was implemented by using the Excel and VBA
language in a Windows XP environment. In
addition, SPSS and Clementine 6.0.1 was also used
to preprocess the raw-data and extract the
association rules. We call this prototype system as
FAC (Fuzzy membership function and Association
rule-based Causal knowledge base). Figure 2 shows
the raw database for credit screening.

3.1 Phase 1: Fuzzy membership function

In the first phase, we adapted the fuzzy
membership functions to transform the real data
into fuzzy sets. Fuzzy membership functions used

in this phase was as follows (Mitra & Pal, 1994):
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Figure 3 shows the fuzzified datase transformed
by fuzzy membership functions.
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Figure 2. Raw database for credit screening
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Figure 3. Fuzzified database

3.2 Phase 2: Extraction of the fuzzy association
rules

The association rule mining algorithm we
adopted here is an APRIORI algorithm (Agrawal et
al., 1993), which was known to yield a set of
association rules. Based on the preprocessed credit
database in Figure 3, the corresponding association
rules were extracted with a threshold of 80%
confidence. Table 1 shows an excerpt of the derived
association rules. The association rules shown in
Table 1 are straightforward and easy to understand
and interpret. Figure 4 shows the association rule
extraction process using Clementine.

creditfuzzy sav select

Figure 4. Association rule extraction process
using Clementine

3.3 Phase 3: Development of the causal
knowledge base
After the extraction of association rules, FCM-

driven causal knowledge base was constructed.
Figure 5(a,b) shows the FCM-driven causal
knowledge base.

Table 2. Example of association rules from the
fuzzified database

V15 == low <= V11 == low (334:99.405%, 0.991)
V11 ==low <= V15 == low (333:99.107%, 0.994)
V8 == low <= V11 == low (334:99.405%, 0.943)
V11 == low <= V8 == low (316:94.048 %, 0.997)
V14 == low <= V11 == low (334:99.405%, 0.922)
V11 == low <= V14 == low (310:92.262%, 0.994)
V13 == g <= V11 == low (334:99.405%, 0.913)
V1l == low <= V13 == g (307:91.369%, 0.993)

V2 ==low <= V6 == w (35:10.417%, 0.8)
V16 ==up <= V10 ==1 (177:52.679%, 0.819)
V7 ==v<=V6==w (35:10.417%, 0.886)
V10 == f <= V9 == £ (92:27.381%, 0.826)
V16 == down <= V9 == f (92:27.381%, 0.848)

4. Conclusions

The result of experiment with an illustrative
database proved to b valid and robust. In conclusion,
this study has shown how the fuzzy association
rules and FCM can be brought together to create
causal knowledge base. It is expected that the
proposed  hybrid  causal knowledge  base
construction mechanism will have a significant
impact on the research domain related to the
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Figure 5(b). Sub example of FCM-driven causal knowledge base: graph

perception and knowledge management. Further
research topics still remaining are as follows:

(1)  The basic technology of association rule
mining used for this study needs to be
improved so that more fuzzy knowledge
can be analyzed.

Fuzzy membership functions need to be
integrated with other rule refining and
reasoning mechanism.

FCM construction processes need to be
improved with other useful knowledge
management mechanisms.
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