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ABSTRACT

In this paper, we describe an approach for image
denoising using the lifting construction, with the spatial
adaptive wavelet transform. The adaptive lifting scheme is
implemented in spatial domain to be adjusted thresholds to
reduce noise. In this approach we represent adaptive
characteristics of biorthogonal wavelets for choosing predictors
effectively. Predict filter is changed from sample to sample

according to local signal features with their vanishing moments.

We in this approach have implemented and applied to image
threshold.
Experimental results show that the adaptive method of

denoising by finding a relevant minimax
denoising process is compared with existing ones, such as non-
adaptive wavelet, CRF(13, 7) and SWE(13, 7) wavelets used

by JPEG2000.

L. INTRODUCTION

Digital image denoising is used to produce good estimates
of the original image from noisy observation in signal and
image processing areas. Denoising algorithms based on wavelet
thresholding have led a very adaptive representation [1]. The
processing of wavelet denoising is carried on the transformed
domain for each subband. The resultant wavelet coefficients are
used as threshold estimation. However, they give drawbacks of
these wavelet transforms that perform real-to-real transforms,
requiring more memory resources, and also fixing over the
entire signal for deriving the scaling and wavelet coefficients.

Thus, a new technique, the Lifting scheme (LS), has been
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proposed by Sweldens [2], that is based on the representation
of the wavelet filters through their polyphase matrix, leading to
a scheme which can factor any wavelet transform into lifting
steps [3], thus constructing prediction/update operations.
Lifting scheme also offers several advantageous properties with
respect to the classical one, having the properties of faster in-
place calculation, easily invertible, non-linearity, and adaptive
design.

Denoising adaptiveness is affected by adjusting
thresholding spatially, based on the reason that detailed regions
having such as edges and textures tolerate some noise but not
blurring [4]. In wavelet transform region, the signal energy is
compacted into a few transform coefficients and noise
contributes to the high frequency and insignificant coefficients.
Based on these neighboring correlated properties taken from a
spatial image and its wavelet transform, we can exploit the
localized property of the coefficients to make it more suitable
for locally adaptive image processing. Thus the absolute value
of the wavelet coefficients is used as a measure that a
coefficients close to zero contains little information and is
relatively strongly influenced by noise.

In this paper, we describe the degree of noise depression
exploiting lifting based construction, with the spatial adaptive
wavelet transform. In this case update filter is especially first
changed from sample to sample according to local signal
features [6]. This allows not only to adapt the predictor to the
signal but also to change the wavelet basis functions at each
point and scale. We in this approach have implemented and
applied to image denoising by finding a relevant threshold to be
fixed with taking advantage of non-garrote shrinkage [7]. In the
rest of the paper, basic lifting scheme and adaptive transform



20038 USt8AISSS

ot
ol

PSS S0 M6 NS

are presented in the next section and followed by experimental

results. Finally, concluding remarks are presented.

II. LIFTING TRANSFORM

2-1. Lifting Scheme

The basic idea, LS, is a relationship among certain
biorthogonal wavelets sharing the scaling function, which also
exploits the correlation structure present in real signals [3].
Discrete wavelet transform(DWT) also can be viewed as
prediction-error decomposition. Thus the scaling coefficients at
a given scale j are 'predictors' for the next scale j-/, while the
wavelet coefficients are 'prediction errors' between the scaling
coefficients and the high resolution data that they are
attempting predict. A lifting scheme comprised of following
three steps. Let x[n] be a set of digital signal:

1) Splitting step:

Dividing the data into two distinct data sets. A simple way is to
split the original data x[n] into the even indexed subset x.[n]
and the odd indexed subset x,[n]. This subdividing is
sometimes called as the lazy wavelet transform.

xe[n] = x[2n] )
Xo[n] =x[2n + 1] ¥3)
2) Predict step:

Performing to obtain the wavelet coefficients d[n] which are
the prediction errors, and predicting x,[n] from x,[n] using the
predictor operator P. By subtracting this prediction from the
odd samples, we reduce redundancy.

d[n] = xo[n] - P(x[n]) 3)

3) Update step:

Using x[n] and d[n] to obtain the scaling coefficients c¢[n]
which represent predictors, i.e., a coarse approximation to the
original signal x[n]. An update operator U is used to calculate

c[n] as following.

¢[n] = x[n] + U(d[n] ) @

Figure 1 shows the principle construction of lifting scheme. In
Figure 1b, the inverse transform can be easily constructed from
forward transform by inverting the operation and signs in (3)
and (4), and leading to the following synthesis equations (5)
and (6).

x[n] =¢[n] - U(d[n]) &)
Xo[n] =d[n} + P(x[n]) (6)

odd/
even
split

%[N}

b) inverse transform
Figure.1 Lifting scheme

Filters P(.) and U(.) can be chosen arbitrary. Since the signal is
reconstructed exactly in reversed order, the transform is always

invertible.

2-2. Update-first wavelet transform

‘When the order of predict and update filters are reversed,
updating-first lifting scheme is obtained as Figure 2. When
predicting-first, the prediction P(.) is performed prior to
construction of the approximation coefficients and iteration to
the next. By updating-first, the prediction operator is outside
the loop so that the approximation coefficients can be iterated
to the lowest scale, quantized, and reconstructed prior to the
prediction. A stability and performance is important to
transforms. Quantized predictors are stably kept from
augmenting propagation of errors throughout the entire

pyramid as Figure 2.
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We use update-first structure to introduce adaptivity into the
wavelet transform. Thus, prediction is only depended on low-
pass coefficients that are computed as in the classical wavelet

transform.
HI. ADAPTIVE IMAGE DENOISING

3-1. Adaptive transform
In this paper we use space adaptive transform that tends
to adapt the predictor to the signal and change the wavelet basis
functions at each point and scale [6]. In a space adapted
transform we employ the update-predict sequence framework
and choose a predictor from a suite of predictors to minimize
each d[n] value. In a N=1 point update, this adaptive algorithm
chooses one point prediction of NE{-5, -3, -1, 0, 1, 3, 5}
symmetric points, and minimizing the value d[n} as shown in
(7). This (N, N) pair is chosen for each n point. The transform
is able to lock-on to the dominant signal structure at each point,
and avoid discontinuities and other high-order polynomial
phenomena that would decease the quality of prediction [5].
d[n] = min || Px( xfn}) | 0
where N is each prediction point that is chosen with N(N)
vanishing moments of the family of biorthogonal Cohen-
Daubechies-Feauveau(CDF) wavelets for the primal(dual)
wavelet [11]. Note that N=1, N=1is the Haar wavelet.

3-2. Threshold selection for denoising

Denoising algorithms based on wavelet thresholding
replace small wavelet coefficients by zero, and keeping or
shrinking the coefficients with absolute threshold value without
greatly affecting the reconstruction. The transform of the noisy
signal w{n] at the receiver end is expressed as follows:

w[n]=s{n]l+en}, n=0,1,..,L-1 )

s[n] is a wavelet coefficient and e[n] is a wavelet coefficient of
the noise, generally assumed as independent and identically
distributed Gaussian with zero mean and variance o7, i.e.,
nij~N(0,oz). win} is a wavelet coefficient of the noisy signal,
and representing the property of additive white noise in the
wavelet domain.

Thresholding procedure of noisy image is handled in three
steps: I)transform data into the wavelet domain, 2)shrink the
wavelet coefficients according to thresholding, 3)perform the

inverse transform to reconstruct the shrunken coefficients.
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Choosing the threshold to denoise is that the problem depends
on at each level and for each subband separately. When the
noise is spread over all coefficients within each level, the noise-
free image can be represented by a limited number of large
wavelet coefficients. From these, we replace the small
coefficients by zero, because they are dominated by noise and
carry only a small amount of information. At the j-th resolution
level, all wavelet coefficients with absolute value below a
certain threshold are classified as noisy, and replacing them by
zero {1][8]. Typically the hard thresholding procedure keeps
coefficients with an absolute value above the threshold, while
soft thresolding shrinkes coefficients with higher absolute
value above the threshold, and replacing coefficients with an
absolute value below the threshold by zero. To remedy the
drawbacks of the hard and soft shrinkage, we apply non-garrote
shrinkage 8,%(x) [7] that is defined as follows:

85X =x(1 - (V%)) ©)
where x| € A then O,
X|>A then x-AYx

The threshold value is calculated adaptive to each subband
components to be A = B o%0,, where ¢ is the noise variance
that is estimated from the subband HHI1, using the formular,
o*=[median(|Y;})/0.6745])", where Y; belongs to the coefficients
of the diagonal direction subband HH1 [12], and o, is the
standard deviation of the subband. Where, the scale parameter
B is applied to the threshold as the global factor, p = 2%, J is
the number of decomposition levels.

IV. EXPERIMENTAL RESULTS

The experiments used natural images of size 256x256,
lena retaining the degree of variation overall sharper, and
showing good qualities at the decomposition level 1 and 4. i.i.d.
Gaussian noise generated using randn function at different
noise levels ¢ =20. For our adaptive transform, we chose a
filter from the (1, N) symmetric branch of the CDF family [11],
where N€& {-5, -3,
minimizing the value d[n]. For providing smoothness and

-1, 0, 1, 3, 5} symmetric points, and

preserving edge, it was possible to cope with any sequences by
finding locally adaptive value. PSNR results for noise
reduction are shown in Table 1 and Figure 3, and showing that
lifting denoising with adaptive method gives better results than
with nonadaptive ones. Figure 4 shows the empirical images to

be denoised with ¢ =20.
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V. CONCLUSIONS

This paper has described an adaptiveness and nonlinearity
of image denoising for the prediction lifting problem. Using the
non-garrote shrinkage, we have also represented a denoising
algorithm more effective at the decomposition level 1 and 4. It
informs us on reducing the propagation error by only
depending on the scaling coefficients as using the update-first
operation, and also adapting to selecting threshold from
optimality criterion in the strong intensity. Future research will
be focused on working out algorithms for more adaptive

selection in the update filter itself.
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Table 1. PSNR results for lena image, adaptive and non-
adaptive wavelets at ¢ =20

Decolrg‘;l)glsmon 1 2 3 4
Adaptive 31.30 30.22 30.20 29.37
Nonadaptive 30.91 30.17 30.12 28.86
CRF(13,7) 30.85 30.46 30.46 29.10
SWE(13,7) 30.80 30.42 30.30 29.10

¢) CRF(13,7)

d) SWE(13,7)

Figure 4. Comparison of denoised lena image at 0 =20
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