About fully polynomial approximability
of the generalized knapsack problem

Sung-Pil Hong
School of Business, Chung-Ang University, sphong@cau.ac.kr

Bum Hwan Park
Industrial Engineering, Seoul National University, pph@optima.snu.ac.kr

September 24, 2003

Abstract - The generalized knapsack problem, or
gknap is the combinatorial optimization problem of
optimizing a nonnegative linear functional over the
integral hull of the intersection of a polynomially
separable 0 — 1 polytope and a knapsack constraint.
Among many potential applications, the knapsack,
the restricted shortest path, and the restricted span-
ning tree problem are such examples.

We establish some necessary and sufficient condi-
tions for a gknap to admit a fully polynomial approx-
imation scheme, or FPTAS, To do so, we recapture
the scaling and approximate binary search techniques
in the framework of gknap. This also enables us to
find a condition that a gknap does not have an FP-
TAS. This condition is more general than the strong
N P-hardness.

1 Introduction

Assume that @ is polynomially separable 0 — 1
integral polytope, ¢,d € Z%, and B € Z,. Then
a generalized knapsack problem can be written as
follows:

Problem 1.1 : gknap

T

min, or max c¢'z

st z€Q
dTz <, or > B
z € {0,1}™.

Thus, given @, there are four possible combina-
tions of the objective-type and the inequality sign
in the knapsack constraint. If, for instance, the
objective is minimization and the knapsack con-
straint has < inequality sign, then we denote the
problem by gknap(min, <).

Example 1.2 Knapsack problem as a
gknap(max, <) or gknap(min,>). Triv-
ially, the knapsack problem is a gknap with
@ = conv{0, 1}". Let p; and wj, respectively, be
the profit and volume of the j-th item, and W
the volume of the knapsack. Then the knapsack
problem is to choose a most profitable set of
items that fits the knapsack capacity,

max pTz
st z € {0,1}"
wlz < W,

or, to find a least profitable set of items which, if
removed, makes the remaining items fit the knap-
sack,

min pTz
st z€{0,1}"
wlz > Y w; - W.

Although the two formulations are equivalent at
the optimality, the approximability of one is not
necessarily preserved in the other as the ratio of
two optimal values, can be arbitrary. A well-
known such example is the node cover and stable
set problem. We will see, however, that two ver-
sions of the knapsack problem are also equivalent
in approximation sense: In general, for the same
@, gknap(max, <) is fully polynomially approx-
imable if and only if gknap(min,>) is so (See
Definition 2.1 and Corollary 3.6).

Example 1.3 Restricted shortest path
problem, RSP: Let G = (V, A) be a directed
graph. Let s, t € V. Then, with a “cost”, c;;
and a “delay”, d;; assigned to each arc (3,7),

the restricted shortest path problem is to find
a minimum cost {s,t)-directed path among the
paths whose delay is no greater than some bound
B.

min ¢(P)
P € P, the (s,t)-directed paths
d(P) < B.

s.t

Then, it is well-known that Q@ C R4, the convex
hull of the characteristic vectors of (s, t)-directed
paths of G, is polynomially separable 0 — 1 poly-
tope. Hence RSP is a gknap(min, <).

The knapsack problem and RSP are known to
have FPTAS. Both problems admit a pseudo-
polynomial dynamic programming algorithm
which finds an optimum in a pseudo-polynomial
time in a single parameter, ¢ or d. It is worth
noticing that essentially every fully polynomial
time approximation scheme in the literature is
based on such a dynamic programming algo-
rithm. For instance, we can devise a dynamic
programming algorithm for RSP as follows: De-
note by d;(v), the minimum delay of a (s,j)-
directed path whose cost is no greater than ~.
Then, with initialization, ds(y) =0 for all vy > 0
and d;(0) = oo, for every j € V — s, we have, for
jeV—-s,andy=12,---,

di(v) = Min{d;(y — 1),Ming,; <y {dk(y -
ckj) +dis}}

Since d;(7) is monotone nonincreasing, when
the recursion ends up with the first value v = +*
such that d,(y*) < B, we have v* = OPT. The
running time is easily shown to be O(|E|OPT).

But, not every gknap problem necessarily has
such a nice dynamic programming algorithm.

Example 1.4 Restricted spanning tree
problem, RST: Consider a connected undi-
rected graph G = (V, E) with V = {1,2,---n}.
Each edge e is assigned two nonnegative integers,
the “cost”, ¢, and “length”, d.. Then, RST is
the problem of finding a spanning tree of the
minimum cost whose length is no greater than a
predetermined bound, B.

min ¢(7T")
T € 7T, the spanning trees of G
dTY< B

s.t

In [1], probably the first literature on RST, Ag-
garwal et al showed that RST is NP-hard. Ravi

and Goemans [7] devised a polynomial time ap-
proximation scheme, or PTAS by carefully ex-
ploring the adjacency of the optima of the La-
grangian subproblem. Their scheme, however,
relying on enumeration of the subsets of edges,
whose number is exponential in the reciprocal of
the approximation error, is not fully polynomial.
The fully polynomial approximability of RST is
currently open.

As mentioned earlier, every FPTAS of combi-
natorial optimization problem relies on a pseudo-
polynomial algorithm. Therefore, one might be
interested in whether RST is solvable in pseudo-
polynomial time. Hong et al [3] showed that a
two-variable extension of the matrix-tree theo-
rem can be used to yield a pseudo-polynomial
time algorithm for RST. It is not known, how-
ever, whether this pseudo-polynomial algorithm
can lead to an FPTAS of RST as it is pseudo-
polynomial in both ¢ and d unlike the previous
dynamic algorithms for the fully polynomially
approximable problems.

On the other hand, to the author’s best knowl-
edge, there is no known problem for which an
FPTAS is proved impossible while PTAS and a
pseudo-polynomial algorithm are known. Thus,
RST is in an interesting position in the map of
non-MAX-SNP-hard problems.

r non-max- SMA-hatd)
e PEaudG=polyrGwal T
FPTAS
strongty WA-hard RSP ;
oty Knapsack RET 2 E

Supset Sum ’ !

Figure 1: Non Max SNP-hard problems

2 Definitions and notation

It is very convenient to interchange the roles of ¢
and d using the symmetry of the two parameters
(2, 6].

Definition 2.1 Let @ be given. We will call
gknap{min, >) and gknap(max, <) are conju-
gates. On the other hand, gknap(min, <) or
gknap(max, >) is the conjugate of itself, or self-
conjugate.

Definition 2.2 Given € > 0, by e- approxima-
tion we mean to find a feasible solution & of a
gknap satisfying

|cT# — OPT| < eOPT.

We will use (-) to denote the binary encoding
length of numbers, vectors, matrices, or even an
instance of a problem. Similarly, ||-||ec Will denote
the maximum absolute value of a number of a
vector, matrix, or an input number of a problem
instance. Note that as @ is 0 — 1 integral, its
vertex and facet complexity are polynomials of
n. So the encoding length of gknap is determined
by n, (cmax)) (dmax); and (B)

Definition 2.3 We say a gknap is fully polyno-
mially approximable if e-approximation can be
done in poly(n, (Cmax), (dmax), (B), 1/€).

Note that a fully polynomial approximation al-
gorithm is also referred to as a fully polynomial
time approzimation scheme or FPTAS in the lit-
erature.

Remark 2.4 We will use the notation poly(- -)
rather abusively. They may not be the same
polynomial with the same set of variables. It may
be best read as “some polynomial of - - .”.

3 Scaling and approximate
binary search

The scaling and approzimate binary search have
been core techniques in developing FPTAS [5, 4,
8]. We recapture them in the general framework
of gknap. To do so, it is convenient to consider
both flooring and ceiling operations: For fixed
€ >0 and C > 0, define

& = L)y & =[] forj =1, ,n()
Lemma 3.1 For every z € {0,1}", we have
Tz > |2]=cTz>C and
Tr<|2]=>cTa<(1+¢€)C,;
Tz < [2]= Tz < C and
T <[2]=clz> (1-¢)C.

(2)

(3)
Problem 3.2 gknap

e,

OPT = T

z, or max &z

min &
st zeQ
dTz < or > B

z € {0,1}™.

Lemma 3.3 /8] Given a positive integer C, let

£ be an optimal solution of gknap(min,) (with ¢
replaced by é). Then,

cTz < OPT + ¢C, 4)
éT$ > |2| = OPT > C and
e < [2}=>0PT < (1+¢)C. (5)

Similarly, let & be an optimal solution of
gknap(max, -) (with ¢ replaced by é). Then,

¢z > OPT - ¢C, (6)
T < [2]=OPT <C, and
éTE > [2] = OPT > (1 —¢€)C. (N

Theorem 3.4 If gknap of Problem 1.1 is solv-
able in a pseudo-polynomial time only in c,
namely in poly(n, tmax, (dmax), (B)), then it is
also fully polynomially approzimable. The con-
verse is also true.

Corollary 3.5 Given Q, a gknap is fully poly-
nomially approzimable if and only if its conjugate
18 solvable in a time that is pseudo-polynomial
in the size of the knapsack constraint, namely in
poly(n, {Cmax), @max, B) time.

Corollary 3.6 Given Q, a gknap is fully poly-
nomially approzimable if and only if its conjugate
1s.

Example 3.7 This corollary tells us that, in
terms of fully polynomial approximability, the
two formulations in Example 1.2 are also equiv-
alent as they are conjugates.

Corollary 3.8 Given Q, a gknap s fully poly-
nomially approzimable if and only if it is solvable
in poly(n, {cmax), @max, B) time.

The following theorem is immediate from The-
orem 3.4 and Corollary 3.8.

Theorem 3.9 For a given @, a gknap is not
fully polynomially approximable (unless P =
NP) if there is an NP-hard subclass in
which dmax, B = O(poly(n,{c))), or cmax =
O(poly(n, (d}, (B)))-

Remark 3.10 WHAT CAN WE SAY ABOUT
THE NECESSITY?

Recall that the strong N P-hardness of a problem
I requires II to have an N P-hard non-number
subclass: I, = {t € IT : |lefloo < p({t))} for some
polynomial p. Therefore, the condition of Theo-
rem 3.8 is more general in the sense that ¢ or both
d and B can have arbitrary values as far as the
maximum absolute value of a number in the re-
maining parameter(s) is polynomially bounded.
We will refer to these instances as semi-number
problems.

Note that the strong N P-hardness is not use-
ful, for instance, for probing impossibility of an
FPTAS for RST. RST is known to have a pseudo-
polynomial algorithm [3] and whose any non-
number instance is, therefore, necessarily poly-
nomial.

References

{1] V. Aggarwal, Y. P. Aneja, and K. P. K. Nair.
Minimal spanning tree subject to a side con-
straints. Comput. Ops. Res., 9(4):287-296,
1982.

[2] R. Hassin. Approximation schemes for the
restricted shortest path problem. Mathemat-
ics of Operations Research, 17(1):36-42, Feb
1992.

[3] S.-P. Hong, B.-H. Park, and S.-J. Chung.
A fully polynomial bicriteria approximation
scheme for constrained spanning tree prob-
lem. Manuscript, To appear in Operations
Research Letters, December 2002.

[4] E. Horowitz and S. Sahni. Fundamentals
of Computer Algorithms. Computer Science
Press, Maryland, 1989.

[5] O. Ibarra and C. Kim. Fast approximation
algorithms for the knapsack and sum of sub-
sets problems. Journal of ACM, 22:463-468,
1975.

[6) M. V. Marathe, R. Ravi, R. Sundaram, S. S.
Ravi, D. J. Rosenkrantz, and H. B. Hunt III.
Bicriteria network design problems. Journal
of Algorithms, 28:142-171, 1998.

[7] R.Raviand M. X. Goemans. The constrained
minimum spanning tree problem. In Proceed-
ings of the Scandinavian Workshop on Algo-
rithmic Theory, LNCS, volume 1097, pages
66-75, 1996.

[8] A. Warburton. Approximation of pareto
optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70-79,
Jan-Feb 1987,

