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Abstract

This paper is intended to compare between the
Bayesian estimates of hazard rate and the hazard rates
of mixed distributions. In estimating hazard rates,
especially when the MLE method is used, such
difficulties as a lack of data and the existence of
censored data make it difficult to estimate the rates.
For this reason, the estimates of hazard rate based on
the Bayesian approach are introduced. For the
simplicity, the exponential and gamma distributions
are adopted as a sampling distribution and its natural
conjugate prior distribution, respectively.

1. Introduction

The hazard rate which is the instantaneous
failure rate does frequently involve unknown
These parameters are usually
estimated from observed data and then the hazard rate
is expressed in terms of these estimated parameters.
This inference on the hazard rate is fine as long as
there are sufficient data. On the other hand, if few
data are available, it is important to allow for

parameters [1].

parameters to have their own probability distributions.

We do this approach by adopting the Bayesian
inference [2, 5].

In the Bayesian approach, the hazard rate may be
obtained by two methods. The first method is to
derive the hazard rate, according to the definition of
hazard rate, from a mixed distribution. The mixed
distribution is
marginalization) of a sampling distribution and a
distribution of the parameters of interest. The second
method is to estimate the hazard rate, which is called

resulted from the mixture (or

the Bayesian estimate of the hazard rate, by taking
expectation of the hazard rate of a sampling
distribution over the parameters having their own
distribution. It is common that the second method is
performed for a squared-error loss function (SELF)
so that the Bayesian estimates includes the
“posterior” means of the parameters given data [3, 5].
In this paper, the exponential distribution and the
gamma distribution are employed as a sampling
distribution and its natural conjugate distribution of
the parameter of interest, respectively.

2. Hazard rates from the prior distribution

The sampling distribution of an outcome ¢
which follows exp(@), given parameter 4, is
pt|o)=6e"°". (1)
The conjugate prior distribution [4] for the
exponential parameter & is gamma(#|a, ), which
is of form

20 a, fy=-Lg=-1e, @)
Ia)

wherea >0and f#>0 are parameters characterizing
the distribution of the parameter 8, which are called
“hyperparameters”. Denote (2) by #(8) . These
hyperparameters will be updated by using the

observed data afterwards.
In order to derive the hazard rate from the first
method, we calculate the corresponding mixed
exponential distribution using the “law of total

probability”,
N AN
p(t)—a[ﬂH)(ﬂH) 3

The corresponding survival distribution, S(¢) , is
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(,B B+ t))a . Following the definition of hazard rate,
or h(t)= p(t)/S(t), we have
Kt)y=a/(f+1) “
as the hazard rate of the mixed distribution.
Since the gamma distribution is a conjugate
distribution for the exponential sampling distribution
[6] and using a Bayes’ fomlula we have,

@=L
T@+1)
the gamma distribution with the updated shape and
scale  hyperparameters a+l and P+t
respectively.

Now, we derive the Bayesian estimate of the
hazard rate under the E[ A(¢{6) ] which is the
expectation of the hazard rate of the sampling
distribution p(¢|8) over the random parameter 6.
We have the following Bayesian estimate of the
hazard rate

9ae-(ﬂ+t)6 (5)

b

E[A(t10)11] = ja Al L B+ e g0 g
=(a+D/(p+1). (6)
We have two different hazard rates (4) and (6).
Note that both of the hazard rates are functions of ¢
which is the unobserved future observation. The
hazard rates (4) and (6) are decreasing in ¢. This is
due to the fact that a mixture of exponential
distributions, each of which is DFR (decreasing
failure rate), is itself DFR [1].

3. Hazard rates from the posterior distribution

We now consider the case that we have the
observed data : and calculate the hazard rates with
respect to the unobserved future observation 7 . By
using (5) and the fact that ¥ and ¢ are
independently conditioned on the parameter 8 we
have the corresponding mixed distribution,

pEln =@+ f ) @

ﬂ+t TZ'&-I
(ﬂ+t+t~ - By

the definition of hazard rate, or

Its survival distribution, S(7|t) , is

following

h(E|0)=p(f|D/S(f|1), we have

~ a+l
h(t|t)—m 8)

as the hazard rate of the mixed distribution. If there
are n additional data ¢={¢,....t,}, we have

~ a+n
h(tm_ﬁ+t1+...+t,,+7' ©)

We now derive the Bayesian estimate of the
hazard rate. We take expectation over &, with the
posterior gamma distribution updated from (5). Thus,
we have

E[h(t|¢0)|;] = M ot~ (B+1+D)0 4o
0 INa +2)
a+2
== 10
B+t+t (10)

Similarly in the case of n observed data we have

- ~ a+n+l
E[h(tlz,ﬂ)lt]=ﬂ+t T (1)
] eas n

We have again two different hazard rates. Two
hazard rates are also decreasing in time 7 due to
the fact that a mixture of exponential distributions is
DFR.

4. Comparing resulting hazard rates with MLE

In classical approach, unknown parameters in
stochastic models are usually estimated from
observed data by adopting the maximum likelihood
estimate (MLE) method. The MLE is given by 6
such that

pt16)2 p(t|g) forall 924. (12)
The MLE of (1) is obtained by differentiating (1)
with respect to @ and equating 0. Itis
6=1/t. (13)
Since the MLE (13) is a function of time ¢ whose
value has not yet been observed, it is not a constant
hazard rate. In order for the hazard rate of the
exponential distribution to be constant, one way is to
adopt the mean value of a prior distribution for the
parameter ¢ . For example when the gamma
distribution (2) is used for the prior distribution, the
mean value of @, if adopted as an estimate of the



hazard rate, becomes «/f which is constant in
time. When we have observed ¢ and we estimate
the hazard rate for the unobserved future observation
7, the MLE of @ is updated by considering the
joint distribution  p(t,7|#) and finding 6
maximizing it. The resulting MLE is

O=2/(t+7), (14)
likewise, if there are n observed data ¢,,...,z,, then

we have

O=nl(t, +..+1, +7). (15)
The estimate (14) is still a function of time, in which
¢t has been observed and 7 has not been observed
yet. This estimate does not guarantee a constant
hazard rate either. The corresponding mean value of
the posterior distribution of (2), once it is adopted as
an estimate, is (a +1)/(f +¢), which is constant
since ¢ has been observed to be known. As an
estimate, the mean value of the prior or posterior
distribution for the random parameter € guarantees
that the exponential sampling distribution has the
constant hazard rate in time.

When there are sufficient data, the MLE of
hazard rate of (1), which is evaluated by using only
the collection of observed data, will work fine. We,
however, often face with the situation in which few
data are available due to various reasons. In this
situation, the Bayesian approach allows one
advantage that a subjective prior distribution can be
used to incorporate expert judgement before
observing data.

There is also a respect discriminating between
the MLE method and the Bayesian approaches. In the
MLE method, whenever new data are available, the
estimates of the hazard rate are calculated by using
the joint distribution of all the new and historical data.
For example, the estimate of hazard rate (13) has
become (14) from the joint distribution p(1,7]6).
On the other hand, only the new data are used for
updating the hazard rates in the Bayesian approach.
From this phenomenon we can say that the Bayesian
approach includes a learning process.

Comparing between two hazard rates (4) and (6),
it can be seen that the Bayesian estimate (6) is the
estimate of the true hazard rate (4) and it is simply
the posterior mean of the parameter conditioned on
the future observation ¢ which i5s assumed to be
known. Both kinds of hazard rate can be used for the

reliability analysis related to the unobserved future
observation since they are functions of the historical
data and the unobserved future observation
themselves. It can be asserted that a true hazard rate
will work better than its estimated value in

performing the reliability analysis.
5. Numerical simulation

Followings are pseudo random data from

exp(0.01) generated by random number generator:

83 22 75 34 185 195 144 219 53 45.
Let us assume that failure occurs independently
according to the exponential distribution, that is
t] 8 ~ exp(8) . We will estimate the hazard rate from
above data by foregoing estimate methods and
compare those estimated hazard rates.

For a MLE, from (15) the estimated hazard rate
is §=0.0095. In the case of applying the Bayesian
approach, first we should determine a prior
distribution. There are many kinds of method to make
or select a prior distribution [6], but in this paper we
use the gamma distribution as described in Section 2
whose  hyperparameters are a= 5, and
[ = 467.3576. Hence, from (8) and (11), the
estimated hazard rates by the Bayesian approach are
0.0099 (from mixed distributions) and 0.0105 (from
Bayesian estimate). Therefore the hazard rate by
using the mixed distribution is the most exact.
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Fig.1. Trend of estimated hazard rate from MLE (line with circles),
mixed distribution (line with rectangles) and Bayesian estimate
(line with triangles)

Besides Fig.1 shows the trend of three estimated
hazard rates corresponding to the addition of data and
from Fig.1 we can see that our estimated value can be
largely changed unless the sufficient data are
obtained. However variation of estimated hazard
rates using Bayesian approach is less changeable than
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that of MLE.
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Fig.2. Approximate failure-time distribution cgrresponding to
H=012SE(H),0=0+5E(0),and 6=6

Fig.3. Approximate failure-time distribution from mixed
distribution corresponding to & = E[0], 8 = E[F]+£ S.E(F),
6 = E[@)12S.E(O)

Parameter & can be examined by the following
consideration. The distribution of the MLE 8 is
inverse gamma with mean, E(é)r-nél/(n-»l) and
variance, Var(8)=(n0) /{(n-1)*(n-2)} . Also,
for a Bayesian approach, since 6 follows gamma
distribution and hazard rate of exp(f) is parameter
# itself, we can show that the hazard rate & after
observing 10 data becomes gamma( &] 15,
1522.3576). Fig. 2 and Fig.3 show the f{(+|&)
corresponding to the MLE and Mixed distribution.
The corresponding mean lifetimes given by y=1/86
vary from 59 to 476 (MLE) hours and 67 to 204
(Mixed distribution). Clearly, decisions based upon
assuming, #=4 that is MLE, might not be reliable.

Finally Fig4 illustrates each estimated hazard

rate.

i7 41

Fig.4. estimated hazard rate function for each method (D Bayesian
estimate, @ Mixed distribution, @ MLE)

6. Conclusions

In many real problems, data must be considered
as very important and valuable things to analyze the
problems, However analysis only using data is
unreliable when there is no sufficient data to perform
effective analysis. In order to resolve this situation,
we introduced Bayesian approach in this paper.
Recently Bayesian approach is considered as a good
method to perform in probabilistic analysis. The most
important properties of Bayesian approach are two
things are learning process and fact that we can use
both data and experts’ acknowledge. These properties
may make Bayesian approach more effective than the
traditional statistics in many real engineering field.
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