전단시험에 의한 토목섬유 보강제의 지반 적응성 평가

조성호, 최세환, 차동환, 류중재*, 전한용*
심양사 중앙연구소, *전남대학교 응용화학부

An Experimental Evaluation for Geotechnical Properties of Geosynthetic composites by Direct Shear Test

Seong-Ho Cho, Se-Hwan Choi, Dong-Hwan Cha, Jung-Jae Ryu* and Han-Yong Jeon*
Industrial Material Group, Samyang Central R&D Center, Daejeon, Korea
*Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju, Korea

1. 서론

일반적으로 토목 공사에서 구조의 보강 용도로 주로 사용되는 지오그리드(geogrids)는 우수한 인장 탄성계수와 인장강력등을 지니고 있어서 하중이 집중적으로 작용하는 토목 구조물에서 보강기능을 원활히 수행하는 보강재료 이지만, 비교적 큰 격자손 사이 구조물 가로로 지오그리드를 판광하는 각종 물질, 특히 함수수무와 세릴질 토양의 아동이나 유실 등을 효과적으로 제거하지 못한다는 단점도 있어 사용상의 제약이 있다. 반면에 토목 구조물에서 널리 사용되는 토목용 부직포는 서로 다른 토질의 분리, 토양내 수분의 배수 등의 용도로 많이 사용되고 있지만, 인장강도와 인장탄성계수, 크리프 등에서 제약이 있어 단위 중량을 상당히 크게 하더라도 보강 보호 기능이 강조되는 토목공사에의 적응은 제한되어 왔다. 본 연구에서는 보강기능과 분리/배수 기능을 동시에 수행할 수 있도록, 고강도 보강조직과 토목용 부직포를 위업로렌방식으로 결합시킨 새로운 형태의 지오컴포지트(geomocomposite)를 개발 제조하여, 기계적, 수리적 특성의 평가와 함께 토양과의 점단마찰특성 등 토목공학적 요구 성능을 복합적으로 평가하였다. 성능의 비교평가를 위하여 폐기물 매립장이나 연약지구 등 기존 토목공사에서 많이 사용되는 토목용 부직포들을 선정하여 그 특성을 비교 평가함으로써, 새로운 토목용 복합재료의 적응 가능성을 제시하였다. 아울러, 실제 현장 현장 보일 시공 시에 많이 문제가 제기되는 포설 방 법에 대해서 검토하고자, 폭 방향의 접점 포설과 봉합 포설을 실내의 대형 작업 전단시험으로 비교 실험 포설방법의 기준을 평가하였다.

2. 실험

2.1. 시료의 준비

본 연구서 사용된 지오컴포지트의 보강 원사는 국내에서 생산되는 플리에스테르(PET) 고강력사 제품들 중에서 고강력 및 고탄성계수와 함께 신율이 떨어지면서 특정 신도(5%)에서의 강력(LASE 5%)이 높은 제품을 선택하였다. 그리고 지오컴포지트를 제조하기에 적합하도록 비교적 성능과 작업성이 우수한 200g/m² 플리에스테르 필름을 털편 부직포를 선정하여, 지오컴포지트 제조에 사용하였다. 표 1에 지 오컴포지트 시료를, 표 2에 본 실험에서 사용된 모두 토목합성재료를 각각 나타내었다.

2.2. 공학적 특성 평가

토목합성재료의 기계적 특성을 평가하기 위하여 ASTM D 4595에 의거하여 광폭 인장시험을 실시하였으며, 토목구조물의 설계 시 인장강도를 산출하는데 기초가 되는 최대 인장강도와 변형률을 측정하였다. 그리고 지오컴포지트의 분리 및 열과 기능을 비교하고자, ASTM D 4491에 의한 지오컴포지트의
수직투수성(permitivity)을 평가하고, 실제로 토목 구조물에 포설된 후의 수직응력 하에서의 배수능력 을 평가하기 위하여 ASTM D 4761에 따른 수평투수성(transmissivity)을 평가하였다. 또한, 실제 구조물 중에서 발생할 수 있는 흙에 의한 막힘 현상(clogging)을 측정하고자 유효구멍크기(AOS)도 ASTM D 4571에 따라 평가하였다. 또한, ASTM D 5321에 의거하여, 지오컴퍼지트를 블록에 고정시키고 수직응력을 가한 상태에서, 정지된 토양위로 미세하게 미끄러지게 하면서 그 전단응력의 저항을 측정하였다. 수직응력을 3, 6, 9, 12t/m²로 다양하게 증가시키면서 마찰강도를 평가한 다음에 최대전단응력 파괴포락선을 통하여, 흙/흙 및 흙/보강재 사이의 내부 마찰각과 마찰효과를 평가하였다. 그리고 페기물 매립장, 연약지반 등의 토사공원에서도 널리 사용되고 있는 700g/m² 부직포와 지오컴퍼지트에 사용 된 200g/m² 부직포를 선정하여 지오컴퍼지트 6T, 12T와의 공학적 특성을 비교, 평가하였다.

또한 각각의 토목합성재의 포설 시공 시에 부직포와 컴퍼지트 접합면에서의 마찰 거동특성을 비교하기 위하여, 각각을 격침 포설 및 봉합 포설하고 시료를 제조하고 격침면에서의 전단특성을 평가하였다. 격침 포설의 경우, 부직포나 지오컴퍼지트 시료를 약 15cm 깊이서 전단 부위에 포설하였으며, 봉합 포설의 경우, 격침은 부위를 미리 준비한 재봉기로 2000d 클러스터 고강력사를 이용하여 6일 재봉하였다.

<table>
<thead>
<tr>
<th>제품 규격 (MD/CD)</th>
<th>MD</th>
<th>CD</th>
<th>GRAVITY (g/m³)</th>
<th>부직포</th>
</tr>
</thead>
<tbody>
<tr>
<td>경사 총 본수 밀도 격자크기</td>
<td>최고 150</td>
<td>8.4mm</td>
<td>3000d 7분/in 3.6mm</td>
<td>500d 489 200</td>
</tr>
<tr>
<td>6T/6T</td>
<td>7,000d</td>
<td>489</td>
<td>3분/in</td>
<td>8.4mm</td>
</tr>
<tr>
<td>12T/6T</td>
<td>14,000d</td>
<td>489</td>
<td>3분/in</td>
<td>8.4mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>토목합성재료</th>
<th>구분</th>
<th>토목합성재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>지오컴퍼지트 6T</td>
<td>D</td>
<td>지오컴퍼지트 12T 격침</td>
</tr>
<tr>
<td>B</td>
<td>지오컴퍼지트 12T</td>
<td>E</td>
<td>지오컴퍼지트 12T 봉합</td>
</tr>
<tr>
<td>C</td>
<td>부직포 200g/m²</td>
<td>F</td>
<td>부직포 200g/m² 격침</td>
</tr>
<tr>
<td>D</td>
<td>부직포 700g/m²</td>
<td>G</td>
<td>부직포 200g/m² 봉합</td>
</tr>
</tbody>
</table>

3. 결과 및 고찰

3.1. 기계적 특성

표 3에 지오컴퍼지트와 토목용 부직포의 광폭인지시험의 결과를 나타내었다. 지오컴퍼지트(이후 GC라 함)의 A와 B는 토목용 부직포(이후 GN이라 함)의 C와 D에 비해 고강력, 저변형을 나타내며, 대표적 보강재인 지오그리드의 안정거동과 유사한 현상을 나타내었다. 따라서 지오컴퍼지트는 토목용 부직포에 비해 구조물 보강과 변형억제를 효과적으로 저어 할 수 있을 것으로 판단된다.

3.2. 수리학적 특성

표 4에 지오컴퍼지트와 토목용 부직포의 수직 및 수평 투수계수와 유효구멍크기를 나타내었다. 지오컴퍼지트 A, B의 수직, 수평투수계수는 토목용 부직포 C, D와 유사한 수준으로 단위 중량과는 큰 영향을 없음을 알 수 있고, 유효구멍크기는 부직포의 단위중량에 증가할수록 높이 감소하여 작아짐을 알 수 있다. 이 결과로부터 지오컴퍼지트는 토양 중에서 분리, 배수, 배수, 여과 등의 수리적인 기능 역할을 원활히 수행할 것으로 판단된다.
표 3. 토목합성제료의 기계적 특성

<table>
<thead>
<tr>
<th>항목</th>
<th>GC 6T(A)</th>
<th>GC 12T(B)</th>
<th>GN(C)</th>
<th>GN(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>강력 (t/m²)</td>
<td>6.8</td>
<td>13.2</td>
<td>5 × 10⁻²</td>
<td>17.8 × 10⁻²</td>
</tr>
<tr>
<td>인장변형율 (%)</td>
<td>10.0</td>
<td>10.5</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>단위중량 (g/m²)</td>
<td>425</td>
<td>500</td>
<td>200</td>
<td>700</td>
</tr>
</tbody>
</table>

표 4. 토목합성제료의 수리학적 특성

<table>
<thead>
<tr>
<th>항목</th>
<th>GC 6T(A)</th>
<th>GC 12T(B)</th>
<th>GN 200(C)</th>
<th>GN 700(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>수직투수계수 (cm/sec)</td>
<td>분리, 애과</td>
<td>3.9 × 10⁻¹</td>
<td>3.4 × 10⁻¹</td>
<td>3.3 × 10⁻¹</td>
</tr>
<tr>
<td>수평투수계수 (m²/sec)</td>
<td>배수</td>
<td>8.6 × 10⁻⁶</td>
<td>8.3 × 10⁻⁶</td>
<td>8.4 × 10⁻⁶</td>
</tr>
<tr>
<td>유효구멍크기 (mm)</td>
<td>막힘, 분리</td>
<td>0.198</td>
<td>0.190</td>
<td>-</td>
</tr>
</tbody>
</table>

3.3. 전단 특성 시험 결과

(1) 토목섬유 종류별 전단 특성

전단시험에 이용된 토는 SC(점토철 사질토)로서, 점착력 c=4.6 t/m², 마찰각 ϕ=30.5°의 특성을 갖는 것으로 평가되었다. 그림 1에 수직응력 크기에 따른 전단 응력과 전단 변형률과의 관계를 나타내며, 그림 2는 토목층 자체별로 전단 면의 최대전단응력 파괴포함선을 그래프화 하여, 흙과 보강재 사이의 접착력과 내부마찰각을 구하였다.

표 5는 각각의 시료의 전단특성 평가 결과로서, 지오컴퍼지트 A와 B의 내부마찰각의 차이가 25°, 마찰효율 80% 이상이며, 토목층 부직포 C에 비해 우수한 마찰특성을 나타내고 있다. 이는 하단면 표면 조 직의 차이이며, 표면이 상대적으로 미끄러운 부직포에 비해 전단면에서 고장력기 관념으로 균일 표면이 많은 조직을 가지며, 위사방향에서 원사들이 수평축선을 유발하는 동 지오컴퍼지트가 더 우수한 전 단 마찰력도 마찰 특성을 나타내고 있음을 알 수 있고, 따라서 보다 안정한 구조물 보강 보호 기능을 할 수 있을 것으로 예상된다.

한편, 지오컴퍼지트 A와 B를 비교하면, 제품의 인장강력이 증가함에 따라 전단 마찰력이 증가하는 것을 알 수 있는데, 이는 동일한 작자구조 내에서 구성 섬유의 직경이 크기 때문에 이와 비례하여 섬유가 흙과 마찰하는 마찰도 커지며, 전단 마찰응력에 대해 지향하는 제품의 지향탄성력이 증대하기 때문이라고 해석할 수 있다.

표 5. 토목합성제료의 전단특성

<table>
<thead>
<tr>
<th>시료명</th>
<th>접착력</th>
<th>내부마찰각</th>
<th>마찰효율</th>
</tr>
</thead>
<tbody>
<tr>
<td>화강포화토</td>
<td>4.604</td>
<td>30.506</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>GC 6T(A)</td>
<td>2.477</td>
<td>25.206</td>
<td>0.800</td>
</tr>
<tr>
<td>GC 12T(B)</td>
<td>2.029</td>
<td>25.943</td>
<td>0.826</td>
</tr>
<tr>
<td>GN (C)</td>
<td>2.196</td>
<td>22.933</td>
<td>0.718</td>
</tr>
</tbody>
</table>

(2) 봉합, 겹침 포실에 따른 전단 특성

토목공사 현장에서의 시공시에 부직포와 컴퍼지트 등 자체의 포실 시공시에 접합면에서의 마찰 기동특성을 비교하기 위하여, 각 자체의 접합 포실 D와 F, 각 자체의 봉합 포실 E와 G를 각각 시료로 제조하여 직접전단시험을 통하여 실제 접합면에서 발생하는 흙과의 전단력 변화를 평가하였다. 표 6에 다양한 접합면 경우에서의 전단특성 결과를 나타내었다. 지오컴퍼지트 B와 부직포 C의 경우에 서 원시료와 비교한 접착 및 봉합시료의 결과에서 토목공학적인 유효한 차이가 없음을 알 수 있다.
표 6. 토목합성재료의 병합, 접착 포설에 따른 전단특성

<table>
<thead>
<tr>
<th>시료명</th>
<th>접착력</th>
<th>내부마찰각</th>
<th>마찰효율</th>
</tr>
</thead>
<tbody>
<tr>
<td>화강풍화토</td>
<td>4.604</td>
<td>30.506</td>
<td>1</td>
</tr>
<tr>
<td>GC 12T(B)</td>
<td>2.029</td>
<td>25.943</td>
<td>0.826</td>
</tr>
<tr>
<td>GC 12T 접착(D)</td>
<td>1.532</td>
<td>26.1174</td>
<td>0.874</td>
</tr>
<tr>
<td>GC 12T 병합(E)</td>
<td>2.381</td>
<td>25.010</td>
<td>0.792</td>
</tr>
<tr>
<td>GN (C)</td>
<td>2.196</td>
<td>22.933</td>
<td>0.718</td>
</tr>
<tr>
<td>GN 접착(F)</td>
<td>2.208</td>
<td>22.700</td>
<td>0.710</td>
</tr>
<tr>
<td>GN 병합(G)</td>
<td>2.589</td>
<td>23.725</td>
<td>0.746</td>
</tr>
</tbody>
</table>

4. 결론

지오컴퍼지트의 기계적 안정 특성 결과, 제품설계 강도보다 높은 인장강도와 12% 미만의 양호한 낮은 변형력을 나타내어, 지오그리드와 유사한 인장특성으로 보강기능이 양호하였다. 수리학적 특성은 일반적으로 사용되고 있는 부직포와 유사한 수준의 수직 및 수평 투수성능을 보이며, 따라서 분리, 여과 기능을 원활히 수행할 것으로 판단되었다. 그리고 전단특성은 흙의 마찰특성을 근거로 한 평가에서 양호한 전단 마찰력을 보임과 동시에, 접착력 2.5t/m², 내부마찰각 25°, 마찰효율 80% 이상으
로 기존의 토목용 부직포에 비하여 우수한 전단마찰 특성을 나타내므로, 향후 보강/분리 복합재료로 써 효과적으로 사용될 것으로 판단된다. 한편, 현장 포설방법에 따른 직접 전단시험으로 비교 결과, 접
착이나 병합의 필요에 대하여 특별한 필요성 근거를 나타내지 않았다. 끝으로, 지오컴퍼지트는 향후 새로운 용도와 분야에서 실제 시공을 통한 적응성 평가가 추진되어야 하며, 이를 위해 보강설계 기준, 내시공성, 내약성성 등 다양한 특성 평가가 선행되어야 할 것으로 생각된다.

5. 참고문헌