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ABSTRACT

This paper provides the first known flexural vibration data for thick (Mindlin) rectangular
plates having V-notches. The V-notch has bending moment and shear force singularities at its
sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory,
in which transverse shear deformation and rotary inertia effects are considered, the Ritz
procedure is employed with a hybrid set of admissible functions assumed for the rotational and
transverse vibratory displacements. This set includes: (1) a mathematically complete set of
admissible algebraic-trigonometric polynomials which guarantee convergence to exact
frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner
functions which account for the bending moment and shear force singularities at the sharp
corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the
Mindlin comer functions to achieve accurate frequencies for rectangular plates having sharp
V-notches.

1. INTRODUCTION

The problem of free vibration of complete rectangular, thin and thick plates has attracted
the attention of many researchers. However, the scope of previous work done for vibrations of
completely free thick rectangular plates having V-notches or cracks is scarce. First order
shear deformation theories by Reissner” and Mindlinm, that include the effect of shear
deformation and rotary inertia, have also been used in the vibration analysis of moderately
thick rectangular or annular sectorial plates. Huang et al.® provided exact analytical solutions
for the free vibrations of Mindlin sectorial plates with simply supported radial edges that
formed reentrant corners having unbounded bending stresses, and arbitrary circumferential edge

conditions. Recently, based upon the Mindlin plate theory, it has been demonstrated by Kim'’
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that use of the corner functions is essential to obtaining accurate frequencies of completely
free circular plates with V-notches.

This paper provides a new comprehensive database of accurate frequency solutions for
completely free Mind!in rectangular plates having V-notches (see Fig. 1). The relative notch
depth is defined as (a—c¢)/a and the notch angle is defined as (360°— a). For a very small

notch angle, the notch may be regarded as a sharp radial crack.
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Fig. 1 Completely free Mindlin rectangular plate with a V-notch

A Ritz procedure is employed which incorporates a complete set of admissible
algebraic-trigonometric polynomials in conjunction with an admissible set of Mindlin corner
functions. These corner functions model the singular vibratory moments and shear forces
which simultaneously exist at the vertices of comer angles (&) exceeding 180". The first set
guarantees convergence to exact frequencies when sufficient terms are retained. The second
set substantially accelerates frequency convergence, which is demonstrated using numerical
studies. Reported in this paper is an accurate database of non-dimensional frequencies for a
wide spectrum of corner angles and relative notch depths. Comparison studies are also
performed with existing results® of classically thin rectangular plates having V-notches.
2.METHODOLOGY

Consider in Fig. 1 a completely free, thick notched rectangular plate having length 2a,
width 2b and thickness h with polar coordinates (r,0) at the middle surface. The vibratory

rotations and a transverse displacement are assumed in terms of polar coordinates (r,9) at the

middle surface as
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¢.(r,0,t) =&, (r,0)sinwt, ¢,(r,0,¢) =P, (r,0)sinwt, w,(r,6,t)= W,(r,0)sinwt, 1)

where t is time and w is the circular frequency of vibration. In using the Ritz method, one

requires the maximum values of strain energy and kinetic energy, which occur during a cycle
of vibratory motion.

The maximum strain energy in the Mindlin plate due to bending during a vibratory cycle is

e R
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A4 (1 ao ~+ 31‘) ] (2)
2 2
+K2Gh (¢,+ aav:f ) + (¢9+ + aa‘;/‘) :I}rdrde,

where D= Eh3/12(1—v) is flexural rigidity, G = E/2(1+v) is shear modulus, E is

2

Young's modulus, v is Poisson’s ratio, and “ is shear correction factor. The maximum Kkinetic

energy is

2 3
L= 22 ] [h Wi+ (ot qsg)}drdo, @

in which p is the mass per unit area of the plate. The area integral given in Eq. (3) may be

performed for rectangular plate using the following values of 7{(8):

M0)=ooy @S0<6),  r0)=—2L B,<0<6) (42)
MO)=— =25 (6 S0<6),  r(6)=— ite @ s6<6), (4b)
where
() g2
03=tan"1(afc), 0y = —tan‘l(aicj.

In the present Ritz approach, displacement trial functions are assumed as the sum of two
finite sets:

P, =P+ D, B =B+ B, W= WP+ WP ®)
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where @, ¥}, and W? are algebraic-trigonometric polynomials and @7, @;, and W/ are

Mindlin corner functions. The admissible polynomials are written as

M, m M, m
o= Y Y A leosnf+ Y A, ™ lcosnf (6a)
m=2,4n=10,2,4 m=1,3,5n=1,3,5
Ms m M‘ m
&= 3 Y B, lsinnf+ Y, Y B,.r™ lsinnd (6b)
m=2,4n=2,4 m=13,5n=13,5
M, m M, m
wr= Y, 2 Con?™ lcosm+ Y, Y} Crar™ cosnd (6¢)
m=0,2,4n=10,2,4 m=1,3,5n=1,35
for the symmetric vibration modes, and
M, m M, m
= 3 Y D™ lsinnd+ Y D,,r™" 'sinnf (7a)
m=2,4n=2,4 m=1,3,5n=1,3,5
M, m M, m
&8 = 2 E E, .r™ lcosnf+ 2 2 E,..r™ lcosnf (7b)
m=2,4n=0,2,4 m=1,3,5n=1,3,5
My m M, m
wr= 3y, Y, Fpr™ !sinnd+ 3] F,.r™ lsinnd (7c)
m=0,2,4n=0,2,4 m=1,3,5n=1,3,5

for the antisymmetric modes. In Egs. (6) and (7), Amn~Fma are arbitrary coefficients, and the
values of m and n have been specially chosen to eliminate those terms which yield undesirable
singularities at 7= 0 and yet preserve the mathematical completeness of the resulting series,
as sufficient terms are retained.

The displacement polynomial Eqs. (6) and (7) should, in principle, yield accurate frequencies.
However, the number of terms may be computationally prohibitive. This problem is alleviated
by augmentation of the displacement polynomial trial set with admissible corner functions,
which introduce the proper singular vibratory moments and shear forces at the vertex of the
V-notch (Fig. 1). The set of corner functions is taken as, for the symmetric modes:

K,
¢ = E G [¢cos (A + 1) — yicos (A, — 1)6) (8a)
k=1
Ky
5= Y G [— Gsin (A + 1)0+ y,sin (A, — 1)6] (8b)
k=1
Ky B R
We= Y Hr " leos (5,4 1)0 (8c)
k=1

with
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Ak(1+l/)_3+l/

_ (i + D (A= Dsin(M—1)a/2

Ck 2XAesin (Vs — 1) /2  where % = X 0¥ v)F3—» (8d)
In Egs. (8), the Ax and ch are the roots of the characteristic equations
sin\ia =— A\sina, sin (X, + 1)a/2 =0 9

Similarly, the corner functions used for antisymmetric modes are analogous to those defined
for the symmetric ones in Egs. (8), except the cosine functions are changed to sine functions,
or vice versa, and the corresponding characteristic equations are

sinA\,a = \;sina, cos (X, + 1)a/2 =0 (10)

Some of the Ax obtained from Egs. (9) and (10) may be complex numbers, and thus result in
complex corner functions. In such cases, both the real and imaginary parts are used as
independent functions in the present Ritz procedure.

The free vibration problem is solved by substituting Egs. (5)-(8) into Egs. (2) and (3) and
employing the frequency equations of the Ritz method. For the symmetric modes, for example,

these are:
aAmn, = 0, aB'ﬂﬂ - 0, aCmn B 0 (lla)
6(Vmax_ Trmx) _ a( Vm - Tmax) .
ac, . %  ——oem 0 (11b)

This results in a set of linear homogeneous algebraic equations involving the coefficients Amn,
Bmn, Cmn, G, and Hi. The vanishing determinant of these equations yields a set of eigenvalues
(natural frequencies), expressed in terms of the non-dimensional frequency parameter,
'wa?\/;h/—D commonly used in the plate vibration literature.

3. CONVERGENCE STUDIES

Having outlined the Ritz procedure employed in the preceding sections, it is now appropriate
to address the important question of the convergence accuracy of frequencies as sufficient
numbers of algebraic-trigonometric polynomials and Mindlin corner functions are retained.
Depicted in Fig. 2 are four representative configurations, which are examined in this work. All
of the frequency data discussed in the present section are for materials having shear correction

factor x? equal to 7r2/ 12 and Poisson’s ratio ¥ equal to 0.3.
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Fig. 2 V-notches with various depths

Table 1 Convergence of frequency parameters waZ\/ ph/D for a completely free Mindlin

square plate having V-notch (a/b = 1, =355, a/h = 20, c/a = 0)

Mode no. No. of Solution size of polynomials
(symmetry Corner
class) Functions 18 19 20 21 22

0 3.294 3.293 3.292 3.291 3.291

1 5 2.150 2.140 2.130 2.121 2.113
(A) 10 2122 2114 2.109 2.102 2.098
20 2.091 2.087 2.084 2.081 2.078

25 2.087 2.083 2.080 2.077 2.074

0 4.894 4.803 4,892 4,891 4800

2 5 3.765 3.761 3.757 3.753 3.751
(S) 10 3731 3729 3727 3.725 3.724
20 3.728 3.726 3725 3.723 3.722

25 3.727 3725 3.724 3.722 3.720

0 5.982 5.980 5.979 5977 597

3 5 5470 5471 5.470 5.469 5.469
) 10 5.465 5.465 5.464 5.464 5.463
20 5.464 5.464 5.464 5.463 5.463

25 5.463 5.463 5.462 5.462 5.461

0 8.485 8.480 8.477 8.473 8.468

4 5 5.921 5.907 5.892 5.883 5.871
(A) 10 5.880 5.871 5.863 5.856 5.849
20 5.846 5.841 5.835 5.831 . 5827

25 5.839 5.834 5.828 5.823 5.820

* (S) symmetric mode; (A) antisymmetric mode

Summarized in Table 1 is the first four non-dimensional frequency parameter wa2\/pT/1_3
for a completely free, notched square plate with vertex angle (@) of 355" and with thickness
ratio (a/h) of 20. This example is appropriately described as a Mindlin square plate with a
sharp notch or radial crack. It should be noted that there are three rigid body modes in the
vibration of the completely free Mindlin sectorial plate which are not shown in the table. It
can be seen in Table 1 that the fundamental frequency mode is an antisymmetric one. An
upper bound convergence of frequencies to an inaccurate value of 3.291 is apparent, as the
sizes of polynomial series are increased with no Mindlin corner functions. Adding five corner
functions improves the convergence rate significantly. Indeed, the trial set consisting of the
first five corner functions along with 18 polynomial solutions yields an upper bound frequency
value of 2.150. An examination of the next three rows of data reveals that an accurate value
to four significant figures is 2.074.

_40_



In Table 2, a convergence study of waZ\/WD for a Mindlin rectangular plate (&/b = 2) is
shown for the case of @ = 355°. It is seen in Table 2 that as the solution sizes of hybrid set
of polynomial and corner functions increase, a slight deterioration in the overall convergence
occurs due to onset on matrix ill-conditioning and numerical round-off errors. Despite the
ill-conditioning, a convergence to three or four significant figures is essentially achieved for

the first four frequencies.

Table 2 Convergence of frequency parameters wa2y/ ph/D for a completely free Mindlin
rectangular plate (@/b = 2, o = 355° a/h = 20, ¢/a = 0)

Mode no. No. of Solution size of polynomials
(symmetry Corner
class) Functions 11 12 13 14 15

0 1.613 1.610 1.609 1.604 1.600

1 5 0.811 0.796 0.786 0.775 0.767
(A) 10 0.772 0.766 0.758 0.753 0.747
20 0.743 0.739 0.734 0.738 0.728

30 0.737 0.732 0.728 -—- ———

0 1.348 1.348 1.348 1.348 1.348

2 5 1.346 1.346 1.346 1.346 1.346
S) 10 1.346 1.346 1.346 1.346 1.346
% %33212 1.346 1.346 1.345 1.345

0 3.738 3.738 3.737 3.736 3734

3 5 2.766 2.756 2.747 2.739 2.735
(S) 10 2.691 2.685 2.680 2675 2672
?6 %g;g 2.671 2.668 2.664 2.662

0 3529 3.524 3511 3.493 3.469

4 5 2410 2.403 2.395 2.385 2.371
(A) 10 2.404 2.400 2.392 2.379 2.368
20 2.394 2.385 2.375 2.362 2.345

30 2.366 2.356 2.343 -— -

* (S) symmetric mode; (A) antisymmetric mode
—--- No results due to matrix ill-conditioning

4. FREQUENCY RESULTS AND COMPARISON STUDIES

Comparisons are made in Table 3 for the first six frequency parameters wa2\/ ph/D of

deep (¢/a = 0) and shallow (c/a = 0.75) notched square plates having a notch angle of 5° for a/h
= 20. Frequency results obtained by using the present Mindlin plate theory are compared with
those reported in a classical thin plate Ritz analysis [Ref. 5]. Here, it is seen that there is
close agreement between the present Mindlin plate theory and classical thin plate theory,
giving lower waz\/,m} values for Mindlin notched plates due to the inherent shear

deformation and rotary inertia.
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Table 3 Comparison of frequency parameters waz\/ ph/D for completely free square plates
having a V-notch (a/b = 1, « = 355°, a/h = 20)

Mode no. da=0 c/a = 0.75
(sym. class)’ CPT’ MPT™* CPT" MPT""
1 (A) 2.095 2.074 3.304 3.206
2 (S) 3785 3.720 4841 4.446
3 (S) 5542 5.461 6.003 5.865
4 (A) 5.982 5.820 8.367 8.000
5 (S) 8161 7.8%6 8587 8175
6 (A) 9.449 9.126 15.14 14.23

* (S) symmetric mode; (A) antisymmetric mode
+Classical thin plate theory [Ref. 5}; ++Present Mindlin plate theory

5.CONCLUDING REMARKS

Highly accurate frequencies for completely free Mindlin square and rectangular plates with
V-notches have been obtained using a Ritz procedure in conjunction with Mindlin plate theory.
In this approximate procedure, the assumed displacements of the plate constitutes a hybrid set
of complete algebraic-trigonometric polynomials along with Mindlin corner functions that
account for singular bending moments and shear forces at the vertex of acute corner angles.
The efficacy of such comer functions has been substantiated by a convergence study of
non-dimensional frequencies.

The accuracy of the present frequency results have been examined through comparisons
with thin plate solutions. Some fundamental understanding of the effect of highly localized
stresses on the plate dynamics can be obtained through careful examination of the frequency
data offered herein.
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