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A Screen Wave Absorber System in a Wave Flume
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1. Introduction

Wave flumes are usually equipped with a wave
generator at one end and a wave absorber at the other
end. The absorbers could be broadly classified into two
main categories: active and passive wave absorbers. A
typical passive wave absorber to eliminate unwanted
reflections is the beach of constant or varying slopes
reaching the bottom. However, such the absorber
occupies a significant part of a wave tank and is not
sufficiently effective to prevent reflective waves in a
certain level. For these reasons, other types of wave
absorbers of more or less complex shapes are used. In
this study, a screen wave absorber system made of
vertical perforated plates is examined so that theoretical
efficiency minimizing reflected energy is given in
several terms such as spacing between screens. The
screen absorber uses porosity as a means to destroy wave
energyand its damping mechanism is based on the fact
that the reflection is smaller when the resonance is
excited so that more energy dissipates through porosity.
A primary merit of screen absorbers is that dissipation
can be controlled varying the space between sheets and
varying the diameter of the wires of the screen webbing.

The absorption of wave energy in a wave flume has
drawn considerable attention of many researchers over
the years and the studies have been mainly conducted on

a theoretical or experimental basis. The earliest work on
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the screen assembly was done by Goda and Ippen
(1963), and also later by Keulegan (1968, 1973).
However, the reflections from wave absorbers were
approximately analyzed. For a single permeable thin
structure, Macaskill (1979) and Chwang (1983) provided
more sophisticate description using the full inviscid
linearised theories. Soon after, a number of authors have
also considered the problems of two or more permeable
thin screens. For single and double slotted breakwaters,
Hagiwara (1984) proposed a theoretical analysis using
an integral equation derived for the unknown horizontal
velocity components in a pervious wall, Twu and Lin
(1991) and Losada et al. (1993) developed analytical
solutions for a wave absorber containing a number of
thin screens by the using orthogonality property.

In this study, a theoretical approach is applied to
design an absorbing system of screen sheet type (As an
example, see Fig. 1) that produces the least amount of
wave reflection when it is struck by a known incident
waves. The method is simply derived under the crucial
relation for a vertical thin screen without the use of
orthogonality property. In Section 2, it is shown that the
problem of upright screen absorbers or porous
breakwaters can be given by plane wave solution. The
main concept and resulting matrix equation is given in
Section 3. The solution is compared with the measured
data of Twu and Lin (1991).
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Fig. 1. Wire mesh screen (Keulegan, 1973).

2. A single screen problem

We shall first consider the wave motions against a
vertical porous screen. Wave motions are assumed to be
uniform in the longitudinal direction thus allowing
vertically two-dimensional analysis. It is also assumed
that wave motions are small so that linear theory is
applicable. For analysis, the Cartesian coordinate system
with the origin on the mean free surface and the z-axis
positive upward is used. An incident waves normally
propagate in the positive x-direction toward a screen
which is situated at x=0 in water of constant depth A.
Assuming that the fluid is invicid and incompressible
and its motion irrotational, the velocity potential can be
written as @ (z,y, 2 t)= Reld (z,z)exp (— ict)]
with harmonic motion of frequency o , where

i= /—1.Then ¢ (z, z) satisfies the Laplace equation
Vi¢ =0, —h<z<0 (1

and the following linearized boundary conditions :

—-02¢+g-g—(zp:0, 2=0 (2a)
9 _ 0, 2=—h (2b)

0z

where g and h are the gravitational acceleration and
water depth, respectively. The boundary condition along

the porous screen may be developed on the basis of the

formulation of Sollitt and Cross (1972) and as adopted
by Yu (1995) for a thin vertical porous breakwater

extending to the seabed. This may be expressed at x=0
for—h < z2< 0as

dp .
B EG(¢s— 1y 3

where G is a porous-effect parameter which is generally
complex. Eq. (3) corresponds to the fluid velocity

normal to the screen being proportional to the pressure
difference across the screen, with a complex constant of

proportionality. In the present study, the method of
Sollitt and Cross (1972) is followed and G expressed by

G e(f+is) @
kb(f*+57)

where € is the porosity of the screen , fis the friction
coefficient, b is the screen thickness, k is the wave
number determined by the dispersion relationship and s

is the inertia coefticient given by

s:1+C,,,(1:€] )

In Eq. (5), C,, is the added mass coefficient. For a
porous medium, s has a value of unit while the friction
coefficient f has been considered to be independent of
the flow and is associated with the porous structure.
Therefore, the real part of G corresponds to the

resistance of the screen and the imaginary part of G
corresponds to the phase differences between the

velocity and the pressure because of inertial effects.
Yu (1995) obtained the following solutions which have
the correct behavior as z— + oo and satisfy the porous

boundary conditions:

_ o 1 ik
¢—A(f(z)(e +T30 ¢ ]z<0 (62)
— 2G
¢=Af(2)i5ge >0 (6b)

where, A, is the magnitude of incident wave potential

given as
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and from linear wave theory,

Fz) = coshk{h+z) @)

coshkh

Equations (6a) and (6b) imply that the evanescent
eigenmodes are not necessary to satisfy the matching
conditions. It was assumed that the porous screen has a
homogeneous and very fine porosity. The reflection and
transmission coefficients of complex value, r and ¢, can
be easily determined from Egs. (6a) and (6b),
respectively as

S
1+2G

and t= _2G _ ®

r “T1+2C

Then the energy-loss coefficient is obtained as

4G

r

o=
(14+2G,)* +(2G))? (10

where G, is the real part of G and G; is the imaginary
part of G. In the case that the resistance effect dominates
the inertial one and thus G is considered as a real value,
therefore, the energy dissipation coefficient can be
expressed as Kriebel (1992)'s formula:

e=2(1-1) (1)

3. A multiple scattering problem
Here we consider the case in which the propagating
effects dominate all other hydrodynamic effects. Then

we obtain the following equations as a resultant of

incident and scattering waves:
v (x)=A_e*z*+ Be ¥ 1", <0 (12a)
Yt (z)= A,e*c®+ Boe * 27, £>0 (12b)

where 1) is the velocity potential of the propagating

A‘ and B+
correspond to the incoming waves from the left and the

mode defined at the free surface,

right, respectively, and A, and B_ correspond to the
scattering waves toward the right and the left from
x =0 where the screen is located, respectively. Now we
seek the overall potentials for waves incident upon the
screen from either the left or the right. The linear
superposition gives

v (z) = A_e*z” + B,te” *z*

. (13a)
+ A_re”"z", <0

Yt (z) = B.e*z® + A_te” *z*

—ikz (136)
+ B.re”%z", >0

where ¢ is the transmission coefficient and r is the
reflection coefficient. Transmission coefficient of
complex value ¢ is given as 1 — r for the thin vertical
screen. Note that ¢/, is continuous although ) jumps
across a screen. Comparing Eq. (12) with Eq. (13)
yields.

A ,=tA_+rB, and B_=rA_+tB, (14

Equation (14) can be obtained by using Jost
functions. Rearranging Eq. (13) with use of r+£=1 gives

v~ (z) = A_e"*z® + B_te” *z°

+r{(d_~— B, )e %z, 2 <0
(15a)

Pt (x) = A_e*z™ + B_te” *z*
—r(A.— B, )e*z", £>0
(15b)
Thus the combined scattering constant R becomes
r{A_— B,). The first two terms are incident wave
terms, while the last term is the so-called scattering term.
Then, it is noticeable that the scattering constant can be
expressed in terms of the gradient of velocity potential,
V1 , across a screen:

R= E_i?l)_ 0 16
ot () (16)

where o is defined as ¢ 1.

Now we consider the two porous screen problem in

which two screens occupy z =+b. We obtain the
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following equations with two scattering terms in which

screens are posed:

1,0(1)=6ik1+R1€_ik(I+b)+Rze_ik(z—b)

(17a)
r<—b
(9] — kT _ ik(z+b) —ik(z—b}
WY e Rie + Re (17b)
—b<zx<}
() . ikr _ ik{z+6) _ ik{z—b)
P e Re Rye (170)

z=>b

Applying Eq. (16) at z =— b, we obtain the scattering
complex constant at the first screen R,

R =, (e * — R, — R,e®™) (18)

r

where o, = ~-
1

Similarly we obtain the scattering constant at the

second screen A,
Ry=a, (e* — R e™* — R,) (19

r
where o, = t_2
2

Then, the scattering constants B, and R, can be now
found from two simultaneous equations as

a; 1+ ay (1 — et™))e #

— (202)
1+ o)1+ ay) — oqae™

R =

oy ezkb

B 1+ a1+ o) — aqoe™

R, (20b)

If we substitute (20a) and (20b) to (17a), (17b) and
(17c), we now obtain the waves at corresponding
regions. Here we represent the reflection and

transmission complex coefficients given as

(- b) ik(l3— 1)

1+a, oge®

a,e * e
a2e""“2'l‘) 1 +a2 azetk(la—lz) - e
ik(l.—1 ik (1, —
aael‘»(ls 1) a3 ik(ly~ 1) 1 +a3 a3e
i S5 '.: _ . :
aNel’»(’/v V) aNeik(lN 1) aNe'k(lN k) .., 1+aN

ik(ly —1)
ik(ly—1;)
ik(ly—1y)

251 (1 + oy ) + o, (1 — )€4ikb
(1+a)(1+a,)— aya.e*™

R~ (21a)

1
T~ - 21b
(140 )1+ ay) — yone™® (210)

These can be written in terms of the reflection
coefficient r and transmission coefficient ¢ for a single
screen as follows.

ATy (b — et
A~ 1— ryr,et™® (222
172
4t
T~ 1 — ryrpet®® (220)
1

Now consider an array of vertical screens dividing the
water into N+ 1 regions. Then for /V screens with
arbitrary length g and location ], we have N+ 1

descriptions of propagating velocity  potential
components:
,wmzezkz__ Zszn&e&'&k(z—-l")gm (23)
A=
where

Sm=—1form<n, S =1form>n

n

The equation for the mth scattering constant is as
follows.

N
]?'m =ay, (eikl,,, . E Rneikll,, -1 ) (24)
n=1

This constructs the N X /V matrix equation of the
form

Rl o e‘lkll
Rz a2 eiklz
By |=—1 czets (25)
Ry aNéiklN
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Once the unknown complex constants are determined,
the reflection and transmission coefficients can be
calculated as

N
R= Y Re™ (262)
n=1
N
T=1- Y Re ™ (26b)
n=1

For the three screens of equal length and spacing as
an example, we can obtain three unknowns, R,, R, and
PR3, by using Cramer's rule as

Ri= - [(140,)(1+ay) o

— (1 - ap)ay (e2ik(ls—l,) _ QHiklla=L) _ 2ik(,-1,) )

et

By=—F— 0 +ay)+
a0y (eik(ls—le) + ik (@2~ 2 =1) _ ezik(ts—l,)) (27b)
_ ase2ik(lg—12)]
ikl —1;)
B=25 (27¢)

A

where A is the determinant given as

A=1+oy)(I+oy)1+og)+

2ik(ly— 1) _ (1 + al)a2asemk(l,—l,) (28)
2ik(l~ 1,) ) g2kl 1)

0Q50,€

— oaye — oo (1+ o,

Then the reflection and transmission complex
coefficients are obtained as

R~ 1 [{21 +Rze—ik(ln—lz) +E’)e—ik(11—13)] (29a)
T 1 ___A_ [R1+13261k(l,—12) _+_12361k(ll——13)] (29b)

These coefficients can be written in terms of the
reflection coefficient for a single screen r as

1
R~ Z[a, (+a)l+a)+(1-a)1-a,)a,e?™ ™ +
(1~a)a,(1+a,)e* 5V —qa,a,e™ ] (304
1
T~z (30b)

Note that T is always given as the inverse of
determinant irrespective of the number of screens. These
coefficients can be written in terms of 7 and 7 as

1 (i
R~ A_[’l +(t, -, "rz)rzeu(l) "
i

R ) (31a)
T~ Lt
4 (31b)

where Ay of (31) is given by

2ik(ly-) 2ik(ly-4)

A =1+2nnne —Khe
_ rzrseZik(lrlz) _ rlrseZik(I, -h) (32)
4. Results

The present method described above is now validated
by comparison with experiments carried out by Twu and
Lin (1991). Figs. 2-5 show comparisons of reflection
coefficient with experiments of Twu and Lin (1991) for
one, two and three porous plates limited with the
impermeable back wall. In the experiments, a water
depth, h=0.5m and the non-dimensional spacing
parameter, //h=0.88 were adopted while in the present
calculation the other parameters, 5=0.024, ¢=0.58 and
s=1 are adopted based on Losada et al. (1993). For the
single plate, Eq. (22a) is used to obtain the reflection
coefficients with r,=1 and ¢,~0 for an impermeable wall.
Similarly, for the two plate, Eq. (31a) is used with rs=1
and 77=0 for an impermeable wall. The reflection and
transmission coefficients of a single screen which are
required in Egs. (22a) and (31a) are obtained from Eq.
(9). The calculated results shown in Figs. 2 and 3 were
obtained by using with f=0.6. With the friction
coefficient constant, the agreement for two-plates
becomes worse at high frequency. Since the friction may
depend on flow strength, the linearly decreasing friction
coefficients from 7 to 3.25 are used with increasing
frequency of the shown range to get similar agreement
for single plate as shown in Fig. 4 and closer agreement
for two plates as shown in Fig. 5. However, the further
study is required to recognize the clear role of friction
coefficients.
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5. Conclusions

In this study, a theoretical method is present for the
design of an absorbing system made of wire-webbed
screen assembly so that the system produces the least
amount of wave reflection when it is struck by a known
incident waves. The method is simply derived under the
crucial relation for a vertical thin screen without the use
of orthogonality property and the reflection is simply
obtained by solving a matrix equation of N*N where N is
the number of water zones divided by screens. The
present method was verified through comparison with
measured data of Twu and Lin (1991).
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Fig. 2. Theoretical reflection coefficients compared
with experimenta! data by Twu and Lin(1991)
for a single-porous-plate wave absorber with

the back wall.
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Fig. 3. Theoretical reflection coefficients compared
with experimental data by Twu and Lin(1991)
for a two-porous-plate wave absorber with the

back wall.
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Fig. 4. Theoretical reflection coefficients (for varying
friction factor) compared with experimental data
by Twu and Lin(1991) for a single-porous-plate
wave absorber with the back wall.
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Fig. 5. Theoretical reflection coefficients (for varying
friction factor) compared with experimental data
by Twu and Lin (1991) for a two-porous-plate
wave absorber with the back wall.
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