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1. INTRODUCTION

Convective-diffusion equations appear in various
disciplines such as hydrology, chemical engineering
and oceanography dealing with the transport problem
of scalar quantities. Since it is nonlinear, numerical
methods are generally used to obtain its solution.
Very limited number of analytical solutions are
available usually in cases when the convective
velocity is constant or has a simple functional form
(for some collection of the solutions, see Noye,
1987). There is however a continuing need to
develop analytical solutions because of its practical
importance. Analytical solutions of the convection-
diffusion equation are valuable not only for the
better understanding on the transport process but the
verification of numerical schemes.

In this paper a vertically one-dimensional solution
for the convection-diffusion equation will be
presented, which are relevant to the study of the
local time-varying structure of suspended sediment.
The convection-diffusion equation was solved
analytically by Dobbins (1944) to investigate the

transient behaviors of the suspended sediment
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concentration from an initial distribution in the
absence of the boundary flux. The solution was
obtained using the classical technique of separation
of variable. Okata and Banks (1961) presented an
analytical solution of an initial value problem in a
semi-infinite porous media.

A solution has been derived in this study in the
presence of boundary flux using a transformation of
dependent variable used by Okata and Banks(1961),
and the eigenfunction expansion over the water
column used by Heaps(1972) in oceanographic
literature. The time-varying depth-variations of the
suspended sediment concentration formed by
shearing stresses of tidal current and wave are

briefly included as application results.

2. BASIC EQUATION

We consider a horizontally infinite ocean of
constant water depth and density. Assuming further
that the eddy diffusivity is constant, we may write
the basic equation governing the vertical distribution
of suspended sediment in the following form.

1 FRAYATY AYUHFEEY- (Comresponding author: Kyung Tae Jung, Coastal and Harbor Res. Division, KORDI,

Ansan PO Box 29, Seoul, ktjung@kordi.re.kr)

2 ojdol =) 38437} (Department of Applied Math., Univ. of Adelaide, Adelaide, South Australia 5005)

- 208 -



M

where ¢ is time, z is the vertical coordinate
(z=0 at the top of the water column and
z2=—h at a reference level or sea bottom),
T(z,t) is the concentration of the suspended
sediment, w is the settling velocity, which is
negative, and ¢ is the vertical eddy diffusivity
coefficient.

The boundary conditions at the top and bottom

levels are taken as follows:

—wT(O,t)+e(

oT
a
@
—(w+Ud)T( ht)+€(%)_h =—Fb-

where F, is the net flux of the suspended sediment
at the sea surface, constant or time-varying, and v,
is a positive constant controlling the downward flux
at the bottom. The subscripts 0 and — /2 denote
the level the partial derivative is evaluated. Note
that the net flux at the sea surface is zero.

The system described by equation (1) and the

boundary conditions (2) is, for convenience,

modified to a equivalent system given below using

delta function. In detail,

oT __ 3T+€aT

3 oz —-F,8(z+hm (3

with

~wro.n+e(-47) =0,

—(wt+vy) T(— b, t)+e(

Following Okata and Banks(1961) and also
Stakgold (1972), we modify the equation (3) to a
Fickian type diffusion

equation. Introducing a

transform of dependent variable in the form

2
T(z, )= C(z, 1) - exp(z—“;z—%t), )
we then have
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where

F, —exp(——z+—t)F(t) @)

Along with the transformation of dependent
variable given in equation (5), the boundary

conditions given in equation (4) reduce to

w 9C -
~gom+e(5) =0,
®)
w aC -
~(Fropc-n+e(9E) =0,
3. SOLUTIONS
The Galerkin-eigenfunction method used by

Heaps(1972) for the vertical variation of horizontal
currents is then applied to decompose the diffusion
equation into a set of ordinary differential equations
which are first-order in time. The final form of
solution is obtained by summing up the modal
contribution and representing in the original variable.
In what follows we describe full details of the
solution procedure taken in this study.

3.1 Galerkin solution in terms of eigen—
function expansion
We seck a solution for the diffusion equation (6)
in the form

Clzh=3 TADfD, - ©)

where C,(f#), 7=1,-,m, are the time-varying
unknown coefficients, f/(z), r=1,+:+, m, are a set
of depth-varying basis functions. Initially the basis
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functions are assumed to be arbitrary.

To determine the time-dependent unknowns, the
Galerkin approximation is applied. Taking first an
inner product with f, in equation (6) and applying
integration by part twice to the vertical diffusion
term (2nd term on the right hand side) gives

" acC _ (0
f-h ot fed2= f_thra(Z'*'h)fkdz

+ [eﬁfk] o [Ec"d_ﬂ]{) (10)
+f cdzf’e
where k=1, ,m

Incorporating the boundary conditions (8) and
substituting the expansion given in (9) lead to

d2= Fbek(_'h)

b3

r=1
- ’21 C\yfr(o) * Bs
m amn
- 2. Ct(~h) - B,
+ezlfjo 7, df"
where
df,
B, =— 5 /0 +e ( *)O
(12)

Bo= g ruant-n—e ()

—h

Choosing f, as a set of solutions (eigenfunctions)
deduced from the well-known Sturm-Liouville

system

e% +Af=0 (13)

subject to

d
d
~(Eaof-nre( L) =0
£0) =

then the 2nd and 3rd terms of the right-hand side
of equation (11) are eliminated and we get

=0, Fyrfi{—h) — 1, C, (15)

where A, is the real-values k" eigenvalue and
@, is the inverse of the norm of the eigenfunctions
given by

0
0,=1/[_fidz (16)

and the well-known orthogonality condition of the

eigenfunctions, that is,

f_ohf,f,, dz=0 if r#k, a7

is used.

Assuming  that the  suspended  sediment
concentration is initially zero throughout the water
column, we may write the solution of equation (15)

as

T, =exp(— 4,0
, (9
° foexp(/lkt) N QkaT(Z') fk(—’h) dr

In case the initial field of the suspended sediment
is non-zero, it is necessary to expand the initial
field in terms of the basis functions. Then, we get

C,=exp(—=A,t) - [TLO)+
(19

[ "exp( A7) - O F (D) fi(— 1) di]
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where

—_— 0 w
Tl 0)=0, [ T(2,0) exp(~ 4L 2) fydz (20)

Eigenfunctions and eigenvalues determined from
equations (13) and (14) are given as

w .
fr =cos a,z+ Teq, SN2
k

) @n

Ay, =¢edt (k=1 m

where @, satisfies the following transcendental

equation.

Vg COS @ih ={( 5 +o) 5 — +eak}

2ea

- sinah @2)

The values of @, Ak=1,---,m, in the above
equation can be evaluated iteratively. In the
presence of the non-zero settling velocity, the first

cigenvalue is non-zero.

3.2 Solutions in terms of original variables

Summing up now the contribution of all
eigenfunctions and substituting equation (18) into
equation (9) give

Cz,0= 3 742

: (23)
fo expl A, (r= ) 10, F, () f,(— k) dr

Substituting equations (21) and (23) into equation
(5) finally gives

T (z,D= exp(—z—— )

rg cosa,z+ 25 sma,z) 4)

{fOIeXD[EGZ,(r— 10, F0) dr}

where

F(7) —exp[—h+ < 7]

(25)
- Fy(o) f,(—h)

Integration of equation (24) can be computed
analytically in case the erosion rate is defined as a
constant or in a simple functional form, otherwise,
is computed numerically using a mid-ordinate
method.

4. APPLICATIONS

Two applications are briefly described. One is the
calculation of the time-varying local structure of the
presence of the
oscillatory tidal shearing stress, another is the
calculation in the presence of shearing stresses by

suspended sediment in the

tidal current and wave action.

4.1 lLocal time-varying structure of the
suspended sediment due to tidal
shearing stress

The water depth is in this study assumed to be

107 and the number of expansion functions m is

The settling velocity w and the

depositional velocity v, are set to —0.0005 m/s

and 0.00025#¢/s (that is, half of the absolute
value of the settling velocity), respectively. The

taken as 16.

vertical eddy diffusivity coefficient ¢ is taken as
0.003m?%/s.

It is worth to examine the
eigenfunctions which has been determined from the
Sturm Liouville system with the mixed type
boundary conditions (Fig. 1).

forms of

l‘!llllll

Depth
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fiz)
Fig. 1. Forms of the first four eigenfunctions
computed from Sturm  Liouville
system of equation (14).

- 211 -



It is interesting to note from Fig. [ that, unlike
the case with homogeneous boundary conditions, the

Ist eigenfunction increases downward. The 7%

eigenfunction has exactly »— 1 zero-crossings. The
signs of f,(—#4) altenate; the even numbered
eigenfunctions have negative values, while the odd
numbered eigenfunctions have positive values.

The erosion rate at the sea bottom is given as

follows:

E) =pU-—) if r,<1,

=0 if 7,> 1, 26

where 8 is a constant, 7, is the bottom stress, and

., is the critical bottom stress. The bottom stress
is represented in quadratic from. Assuming that the

velocity varies in a sinusoidal manner, we write

r,= pkyu’,, sin 2%{ t @7
»

where o is the water density, k, is the bottom
stress coefficient, 22, is the amplitude of the
oscillatory flow, T, is the period of the oscillatory
flow. For experiments in this study we set
7.,=0.01 pk, That is, the threshold velocity for
the erosion of bottom sediment is assumed to be
0.1 m/s. Other inputs values related with the
specification of the erosion rate are: 8=0.00005;
p=1025 kg/m® k,=0.0025; u_,, =0.8m/s;

T,=12.0 hours. Calculations have been conducted
over five tidal cycles with a time step of 7,/3600
seconds. The suspended sediment concentration is
initially assumed to be zero.

Fig. 2 shows the time variations in the suspended
sediment concentration at the three depth Ilevels
(h=—10m, —6m and (m). (Note that the
method given in this study provides information
exactly at the sea surface and sea bottom). It is
evident that the concentration varies in an

oscillatory  manner. Roughly  speaking, the

concentrations reach a quasi-steady state after two

tidal cycles. The amplitude of the oscillations is as
expected the largest at the sea bottom, the smallest
at the sea surface.
Close examination reveals that there are
significant phase differences in the time variations
of suspended sediment concentrations at different
depths. It has been also noted that some negative
concentrations appear at the very initial stage
probably due to well-known Gibbs phenomenon of

the spectral approach.

200 —

160 —]

120 —

s N /\/\/ \VAVAVAVAVAVA

Corentration (moh)

40 —
e T TNt TN T T e T L T T LT

o - T T T T T ]
[+] 20 40 60

Time in hours

Fig. 2. Time variations in the suspended sediment

concentration at z==— j(solid line), at
— 0.6~ (broken solid line) and 0.0
(dashed line).

Fig. 3

suspended sediment concentration at times when the

shows the wvertical profiles of the

bottom concentration reaches at its maximum and
minimum, respectively.

The maximum concentrations are found at the sea
bottom in both cases but the values differ almost
about two times. The minimum concentrations
appear at the sea surface but their difference is very
small. Although results are not shown here,
calculations reveal that increasing the eddy
diffusivity coefficient induces larger difference in the
values at the sea surface. When the eddy diffusivity
is decreased, the profile is sharpened, inducing a
larger difference between the sea surface and sea
bottom concentrations. That is, the eddy diffusivity
determines the depth variation in the sediment
concentration. On the contrary, the depositional
velocity controls the overall concentration within the

water column.
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Fig. 3. The depth variations in the suspended
sediment concentration when the bottom
stress reaches its maximum (solid line) and
minimum (dashed line).

4.2 Llocal time—varying structure of the
suspended sediment in the presence
of tidal current and wave action

Following Signell et al (1990) based upon the
wave-current interaction model of Grant and Madsen

(1976), we assume that

Ty= Tt Ty (28)

where 7,, is the total bed shear stress, 7, is an

instantaneous tidal current shear stress and 7., is
the maximum wave bed stress given by

Typ ™= %pr szb (29)

where f,, is the wave friction factor, and U, is the
maximum near-bed wave orbital velocity.

The near-bed wave orbital velocity is given by

a,w

Us= "inh xi )

where @, is the wave amplitude, w is the wave

frequency (=2x/T,), and x is the wave number
determined from the linear dispersion relation

w? = gxtanhxh €2

where g is acceleration due to gravity.

The wave friction factor @ is computed from the
formula of Johnsson (1967) and also Johnsson and

Carlson (1976);

| |
w7, T lee (g7 (32)

=—0.08 +10g(30l({)bz )

where z, is roughness length. In this calculation
we assume that the friction coefficient associated
with tidal shearing stress remains unaffected by the
presence of wave action. Equations (31) and (32)
have been solved iteratively.

Three sets of calculations have been performed to
examine the influence of wave amplitude, wave
period and roughness height upon the buildup of the
suspended sediment concentration field. It is again
assumed that the sea bottom is the unlimited source
of the suspended sediment. The tidal current shear
has been computed as in 4.1.

Fig. 4 shows the time variations of the suspended
sediment at the three depth levels, which are
identical to results,

previous computed using

a,=0.3m and 0.45m. The wave period and
the roughness height are follows:. T, =7s and

2,=0.0001m. As expected, increase in wave
amplitudes gives rise to increase in the suspended

depths.  The
concentration is approximately doubled. In this case

sediment  concentration at all
contributions of the tidal shea and wave action to
the sediment concentration are more or less same.
Fig. 5 compares the time variations of the
suspended sediment concentrations computed using
T,=6s and 8s with 4,=0.3m and
2,=0.0001m. It is evident that increase in wave
period gives rise to increase in the suspended

sediment concentration at all depths. We can note
that, for a given value of wave amplitude, the
increase in the wave period gives a higher value of
orbital velocity at the sea bottom. Comparing with
result of 4.1 (Fig. 2), we can see that wave action
little changes the concentration when wave period is’
6s.

To examine the effects of roughness height, two

values have been chosen: z,=0.00005» and
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Fig. 4. Time variations in the suspended sediment
=— f(solid line), at
—0.6k (broken solid line) and (.04
(dashed line) computed with tidal current
T,=1Ts, and
a,=0.3m and b)

concentration at

and wave shears, using
2,=0.0001m, a)
0.45m.

0.00027, fixing the wave amplitude as (.3m.
These values are roughly ten times smaller than ued
by Davies and Lawrence (1994) in Irish experiments
of tidal currents under wave-current interaction. The
wave period and other parameters are same as
before. Results are shown in Fig. 6. Increase in the
concentration with a larger value of roughness
height is expected because the wave friction factor
is correspondingly increased (calculations with
2,=0.00005m and 0.0002m give the friction
factors f,=0.01565 and 0.02719, respectively).

5. CONCLUSION AND DISCUSSION

In this study an analytical solution has been
derived using the Galerkin-eigenfunction method. To
accommodate the time-varying form of erosion rate,
the solution has been presented in a time integral
form. The solution of course deals with a more
general situation than that considered by Dobbins
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Fig. 5. Time variations in the suspended sediment

concentration at z=— h(solid line), at

—0.6k (broken solid line) and (.04
(dashed line) computed with tidal current

and wave shears, using @, =0.3m, and

z,=0.0001m. a) T,=06s and b) 8s.
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Fig. 6. Time variations in the suspended sediment
concentration at z=— f(solid line), at

—0.6%2 (broken solid line) and (.04
(dashed line) computed with tidal current

and wave shears, using a,=0.3m, and
T,=1Ts a) z,=0.00005m and b)
0.0002m.
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(1944) and the solution methodology has more
elegant features. The method presented in this study
is applicable to the calculation of heat field in an
idealized subduction region (see Jung et al, 2003).

The erosion rate has been defined in this study in
terms of shearing stresses by tidal currents and/or
wave action. There are two inherent limitations in
the calculation. One is that the eddy diffusivity is
assumed to remain constant, that is, the wave
induced turbulence has been ignored, another is that
the sea bottom is a unlimited source of the
suspended sediment. Nevertheless, some sensitivity
of the input parameters could be examined. It has
been found that the suspended sediment sensitively
varies according to wave amplitude, wave period
and bottom roughness. Increase in the wave
amplitude and period and the roughness height leads
to the increase of the suspended sediment
concentration, indicating that in a shallow coastal
water the wave action can be much more important
than tidal shearing effect.

A comment on the convergence of the solution
might be of value. Since the eigenfunctions are
global in nature, the convergence becomes slow as
the water depth increases and the eddy diffusivity
decreases.

Immediate concemn is to extend the model to the
situation the vertical eddy diffusivity varies in the
vertical direction. For that, the eddy viscosity profile
with a two-layer structure will be reported soon.
Further expansion to two and three-dimensional
models with a horizontal convection and diffusion

will be also reported in the near future.

ACKNOWLEDGEMENTS

The first author has been in part supported by the
project PE83700, PM20600, PE84300 and the
second author has been in part supported by
PE83700 and PM20600.

REFERENCES

Davies, A.M., and J. Lawrence, 1994. Examining
the influence of wind and wind wave turbulence

on tidal currents, using a three-dimensional

hydrodynamic  model including  wave-current
interaction, J. Physical Oceanogr., 24, 2441-2459.

Dobbins, W.E.,, 1944. Effect of turbulence on
sedimentation, Transactions, ASCE, 109, 2218,
629-656.

Grant, W.D. and O.S. Madsen, 1979. Combined
wave and current interaction with a rough bottom,
J. Geophys. Res. (Oceans), 84, 1797-1808.

Heaps, N.S., 1972. On the numerical solution of
three-dimensional hydrodynamical equations for
tides and storm surges, Mem. Soc. Roy. Sci.
Liege, Ser 6, 2, 143-180.

Johnsson, 1.G., 1967. Wave boundary layers and
friction factors, Proc. 10th Int. Conf on Coastal
Eng., New York, NY, ASCE, 127-148.

Johnsson, 1.G. and N.A. Carlson, 1976. Experimental
and theoretical investigations in an oscillatory
turbulent boundary layer, J. Hydraulics Res., 14,
45-60.

Jung, K.T., C.S. Kim, J.C. Lee, HW. Kang, JY.

Jin, MK. Kim and J. Noye, 2003. An analytical

vertically  one-dimensional

equation. Proc. KOSMEE

23.24, Jeju

solution of the
convection-diffusion
Spring  Annual Meeting, May
University, 251-258.

Noye, J.,, 1987. Numerical methods for solving the
transport equation, In: Numerical Modelling:

Application to Marine System, edited by J.Noye,

Elsevier Science Publications B.V.(North-
Holland), 195-229.

Ogata, A. and R.B. Banks, 1961. A solution of the
differential equation of longitudinal dispersion in
porous media. Geological Survey Professional
Paper 411-4, ppT7.

Signell, R.P, R.C. Baerdsley, H.C., Graber and
A.Capotondi, 1990. Effect of
interaction on wind-driven circulation in narrow,

Geophys. Res., 95,

wave-current

shallow embayments, J.
9671-9678.

Stakgold, 1., 1972. Boundary value problem of
mathematical physics, Vol. II. The MacMillan Co.,
New York, pp408.

- 215 -



