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Vortex-Shedding-Induced Dissipation of Waves Scattering against Surface-Piercing
Vertical Thin Plates
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1. Introduction

The breakwater of surface-piercing type has been
developed mainly for application within bays or
estuaries that are semi-protected from the direct impact
of large waves. Most of bays have soft foundation which
is too weak to bear the weight of gravity type
breakwater. Thus the surface-piercing barrier is taken
into account as an alternative tool to reduce wave heights
in the bay to an acceptable level. Differently from the
ordinary breakwater of gravity type, the surface barrier
reduces the transmitted waves mainly due to the
reflection of incident waves from the barrier body.
Traditional breakwaters, seawalls and jetties reflect or
direct wave energy in destructive ways or concentrate it
in local hot spots so that the concentrated energy leads to
the destruction of marine facilities. Among a number of
breakwaters, the vertical barriers with gaps are recently
favored from the point of view of marine environment
since they do not in general partition the natural sea.
Free exchange of water mass through the structures is
possible so that the water in the sheltered region can be
kept circulating and therefore prevent stagnation and
pollution.

The scattering of water waves by such structures has
been solved previously by a number of authors but well
known for the mathematical difficulties encountered

within the framework of linearized potential theory.
Therefore, vertical barrier performance by theoretical
evaluations has been typically accomplished in the
two-dimensional domain, in which the wave
transmission and reflection characteristics are only taken
into account. In harbors and marinas, however, incoming
waves may be significantly diffracted and radiated
beyond such structures and consequently reflected by
harbor warves and returned to them. Under such
circumstances, it is essential for the wave-induced
motion in a harbor to be solved numerically with taking
into account the effect of wave deformation in a harbor.
The numerical approaches of the wave-structure
interaction have concerned several authors. Sawaragi et
al. (1987) proposed a numerical method combining a
three-dimensional Green's function model for near-field
waves around a floating body and a two-dimensional
BIEM model for far-field waves. Recently, Ohyama and
Tsuchida (1997) expanded the mild-slope equation
incorporating evanescent modes to get much higher
computational efficiency as compared to previous
approaches. However, their new sets of mild-slope
equations for evanescent modes still require significant
CPU time and computational storage. As more simple
approach for vertical barriers, Lee and Lee (2001) and
Lee and Lee (2003) proposed a plane wave method to
add scattering terms to the traditional mild-slope
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equation without inclusion of evanescent modes. The
scattering term, which generates the scattering waves, is
determined by the gradient of surface velocity potential
across the barrier. Evanescent modes are only considered
in predicting the reflection ratio against the vertical
barrier.

In this study, an extension is made to allow for
some arbitrary dissipation of energy associated with
the interaction of waves with each barrier. The
present approach is applied to analyze the combined
effects of energy dissipation due to vortex shedding
from the lower edges of a number of vertical
barriers of arbitrary configuration. We use Stiassnie
(1984)'s formula describing the energy dissipation
coefficient due to a vortex motion in a single
barrier.

Model performance is examined for a scattering
problem where the local evanescent modes are ignored.
The numerical results are compared with experimental

data carried out in the wave flume.

2. Mild-Slope Equation

2.1 Governing equation

We derive a set of MSE starting from the
time-dependent MSE proposed by Smith and Sprinks
(1975) as follows:

2
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where, 7) is the free surface displacement, ( the wave
celerity, C, the group velocity. From the dynamic free
surface boundary, V7 can be expressed by velocity
vector, u defined at the free surface as follows:
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where ¢ is the gravitational acceleration. Therefore, Eq.
(1) becomes
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The above equation is combined with
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It is noticeable that Eqgs. (3) and (4) allow the wave
energy propagating with a group velocity differently
from the set of Copeland (1985)'s wave equations.
Similarly as done by Madsen and Larsen (1987)for
regular waves, the above equations are reformulated by
extracting the harmonic time variation with letting
n= Sexp(—ioct) and u= Uezp(— ict) so as to
speed up the solution considerably since one does not
need to resolve the wave period any longer.
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where § is the source term which generates the
incoming waves and [/, is the scattering term defined in
the next subsection. The source term is given in terms of
the incident wave height A, on the grid mesh of Az and
Ay:

As
Az Ay

S, = o C,Hexp (ik sinb;y) (6)

where §; is the incident wave direction, and As is the
width of the incident wave front inside a mesh. A new
set of combined differential equations (5a) and (5b) as
shown above can be applied in most effective
engineering practice to assess the irregular wave
conditions as well as regular in existing or proposed new
harbors.

2.2. Scattering term

A thin barrier can be taken into account as another
source of wave generating because it generates scattering
waves. As shown in Eq. (5a), the scattering term is given
in the momentum equation since it is expressed in terms
of U which is continuous across a barrier. The scattering
term can be determined as the added volume of water
divided by the area of the grid mesh and time step. To
generate U which corresponds to Ry inside the model
boundaries, the term is given by

- 277 -



_ As
U, = QC—AxAy R, ®)

where As is the width of the barrier inside a mesh (see
Madsen and Larsen, 1987). The added amount will
propagate in two opposite directions from the barrier.
Since R, is given by Ur/t, Eq. (8) is now expressed in

terms of y as
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For the case of energy conservation [see Mei (1983)],
r . r|
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t

Thus the conventional mild-slop equation was
modified with an additional term inserted. Note that this
equation is computationally effective as well as
applicable for scattering on the varying depth.

2.3. Numerical scheme

The governing equations are solved by the
approximate factorization techniques leading to the
implicit finite difference schemes. The scheme is applied
with the complex variables defined on a space-staggered
rectangular grid. Since the matrix coefficients of the
corresponding difference equations form a tridiagonal
matrix, they are solved by using the tridiagonal
algorithm which is widely used in solving finite
difference equations because of its great efficiency. The
more detailed description such as the treatment of side
boundary condition and partial as well as free reflecting
wall condition is given in Lee (1998).

3. Energy Dissipation due to Vortex
Shedding

In nature, the presence of the obstacle may
induce vortex breakdown, which in turn introduces
vorticity in the flow. The most important
consequence of vorticity production is energy
dissipation at the expense of the transmitted waves.
So now we consider the waves whose energy is
dissipated.

Energy losses due to vortex shedding from the lower

edge of a vertical plate attacked by surface waves. The
energy dissipation coefficient, which is determined as
the ratio between the flux of the energy taken out by the
vortex generation process, and the incoming wave
energy flux, is given by (Stiassnie at al., 1984) as
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where, a, and k are the amplitude and wave number of
the incoming wave, respectively, and g is the draught of
the plate. This theoretically derived formula, which is
only valid for infinitely deep water, appeared to be in
good agreement with experimental data but The formula
given in Eq. (10) should be modified so that the
coefficient is less than 1 in all frequencies.

For the energy dissipation coefficient, e, we get
in terms of reflection and transmission coefficients

as
ot ¥r ¥t =e (1n

where ()' denotes the complex conjugate. Multiply
Eq. (11) by t.r+ yields

ftolProry + Ir ity = etyr, 12)
and dividing Eq. (12) by tt+,
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where r.=t.=t.
In the case of a symmetric body, r.=r,=r. Thus Eq.
(13) becomes

2 T
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which yields the solutions
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In the special case of no dissipation, Eq. (15)
becomes
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o= % =4 z% (16)
as given by (Mei, 1986). Hereafter the minus sign
is taken of + signs after a comparison with the
well-known single-barrier solutions of Ursell (1947).

We rewrite Eq. (16) in terms of r, and ¢, which
are determined under no dissipation. We introduce a
new factor, ¢, as the assignment factor of
dissipating energy, which is empirically determined.
Then, the relations between |r| and [r,| and between
[t and ||, respectively, to satisfy |3 +e=|r -+
{t"=1 can be given as follows:

= +e~e/2, W =tf—c~e2 (17)

Thus ¢=0 implies that the energy dissipation
equally assigned to reflection and transmission
coefficients, while ¢=e/2 implies that all energy
dissipation occurs when waves transmit. Figure |
presented by Stiassnie at al. (1984) shows that the
energy losses due to the vortex shedding from the
lower edge of a vertical plate occurs when waves

transmit.
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Fig. 1. Reflection and transmission coefficients for

vertical thin plate. Full symbols are for

transmission;  hollow symbols are for

reflection; the crosses are for energy

dissipation (from Stiassnie at al., 1984).

Substituting Eq. (17) into Eq. (16) gives
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(18)

Energy losses due to vortex-shedding can be
embodied by applying Eq. (10) to Eq. (18), and Eq.
(18) is applied to Eq. (9).

4. Performance Test

Figure 2 shows the model performance of wave
reflection and transmission for energy dissipation
calculated by Eq. (10). The mode! was run for two
amplitudes of 5 and 10cm, respectively, to examine the
effect of wave amplitudes. Because of use of e=e/2,
there is no change in both the theoretical and
numerical results for the reflection coefficient in the
figure while the transmission decreases with
increasing wave amplitudes. Thus it implies that the
scattering waves are generated well by the scattering
term given in Eq. (9) which is applied to MSE as shown

in Eq. (5).

Migae

Fig. 2. Performance test of wave reflection and
transmission from a vertical barrier (lines:

given values, symbols: model results).

Now we compare the model results for a surface
barrier shown in Fig. 3a with Ursell's solutions (Ursell,
1947), which are expressed by Bessel functions as
solutions valid for deep-water waves. In Fig. 3b,
variation of normalized wave heights divided by an
incident wave height, H/H[), are shown against
normalized distance divided by the wave length L, z /L.
The model calculation was performed on the mesh of the
number of grid of 201 and grid size of 0.199m using the
wave number &=1m™ and a=1m. The barrier is located at
x=0 which is the center of computational domain. It
shows that deviation from the Ursell's solutions
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decreases with getting away from the barrier. However,
they are indistinguishable for z > L /4.

K

Fig. 3. Comparison with Ursell's solution for a vertical
barrier located at £ =0 a) sketch of surface
barrier, b) variation of wave heights for k=1/m

and a=1m.

5. Physical Experiments

The surface-piercing breakwater was set in a
Sungkyunkwan University wave flume consisted of a
wave generator and a harbor with surface-piercing
breakwater model as shown in Fig. 4.

The flume is 12m long, 0.4m wide and 0.5m deep with
the still water depth being maintained at 0.2m. The
whole length of a harbor is 1.5m. the end of harbor is
closed by an impermeable wall and the spacing of barrier
is 0.462m as shown in Fig. 4. The regular waves were
generated by the piston-type wave paddle. The bottom
and sides walls of the flume are glass to allow easy
optical access. At the other end of the flume, there is an
absorbing beach zone to disperse the remaining wave
energy and to limits reflections.

As shown in Fig. 5, the wave flume was decorated
with the data acquisition system accessing the wave
profile signals from the gages. Gages were connected
with an amplifier. Then the DaqBoard 100A

(DaqBoard), A/D converter, changes conditioned signals
into corresponding digital numbers saved as ASCII
format.

Fig. 4. Wave flume, generator and absorber.

Physical experiments were accomplished for two
different wave periods as given in Table 1. The incident
wave heights were measured without a harbor model.
We assume that the reflective waves against a harbor
model are ignorable because the harbor width of 8¢cm is
relatively narrow when compared with the flume width
of 40cm. The layout of experimental configuration is
illustrated in Fig. 5, showing the locations of the
measurement stations and detailed geometry of the
flume. The model calculation was performed on the grid
mesh of 290%52 and grid size of 8mm. Figs. 6 and 7
show the comparison between the numerical results and
measured wave profiles. With inclusion of energy
dissipation, the better agreement is obtained. The
nonlinear effects are more shown in measured data of
case 1 while the dissipation effects are relatively small.
Further experiments are in progress to verify the present

method more clearly.

Table 1. Input data of physical experiment

period| Hi h/d r e
casel| 091 |3.2cm| 0.75 | 0.125| 0.100
case2 | 0.7 [2.7cm| 0.75 |{0.290 | 0.215

wave gage
No. 1 No. 0 No. 2
SAgn cm

1

0.8cm

144.8 cm _rA_,a cm
150.4 em "

|
_i

[a—

Fig. 5. Physical layout of experiment.
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Fig. 6. Comparison with measured wave profile for
period 0.91sec (solid line: with losses, dashed

line: without losses).
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Fig. 7. Comparison with measured wave profile for
period 0.7sec (solid line: with losses, dashed

line: without losses).

6. Conclusion

The present paper presents a method to take into
account the effects of energy losses due to vortex
shedding from the lower edges of surface-piercing
vertical plates. Stiassnie (1984)'s formula was used
in estimating the energy dissipation coefficients due
to a vortex motion in a single barrier. The
numerical model employed here is an extended
mild-slope equation which has been proposed by
Lee and Lee (2001) and Lee and Lee (2003) using a
plane wave method without inclusion of evanescent
modes. The scattering term, which generates the
scattering waves, is determined by the gradient of
surface velocity potential across the barrier. Evanescent
modes are only considered in predicting the reflection
ratio against the vertical barrier.

The numerical results are compared with experimental

data carried out in the wave flume. The agreement is
generally satisfactory with the inclusion of energy
dissipation effects and indicates that the present method
is able to adequately account for the arbitrary energy
dissipation.
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