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Complete Coverage Path Planning of Cleaning Robot
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Abstract : In this paper, a novel neural network approach is proposed for cleaning robot to complete coverage path
planning with obstacle avoidance in stationary and dynamic environments. The dynamics of each neuron in the
topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's
membrane equation. There are only local lateral connections among neurons. The robot path is autonomously
generated from the dynamic activity landscape of the neural network and the previous robot location without any

prior knowledge of the dynamic environment.
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1.Introduction

Complete coverage path planning (CCPP) of a mobile
robot is a special type of trajectory generation in
2—dimensional (2D) environment, which requires the
robot path to pass through the whole areas in the
workspace. In addition to cleaning robots, many other
robotic applications also require complete coverage
path planning, e.g., painter robots and window cleaners
[1,2]. Autonomous cleaning robots are particularly
useful in hazardous environments. There have been
many studies on CCPP using various approaches, e.g.,
approximate cellular decomposition, exact cellular
decomposition, artificial
networks, and fuzzy logic.

potential  field, neural

In this paper, a novel network approach to complete
coverage path planning is proposed. The state space of
the topologically organized neural network is the 2—D
workspace. The dynamics of each neuron is
characterized by a shunting equation derived from
Hodgkin and Huxley's membrane [(3,4] model for a
biological neural system. There are only local lateral
connections among neurons. The robot path is
autonomously planned without any prior knowledge of
the time-varying environment, and without any
learning procedures. Therefore the model algorithm is
computationally simple. The proposed model is capable
of planning real—time complete coverage paths with
obstacle indoor

avoidance in an unstructured

environment.

2.TheProposedModel
In order to present the model algorithm of the

stationary and dynamic environments, workspace, neural network, shunting equation

proposed approach, first, we briefly introduce the
origin of the proposed neural approach to CCPP.

2.1 Biological Inspiration
In 1952 Hodgkin and
computational model for a patch of membrane in a

Huxley proposed a

biological neural system wusing electrical circuit
elements. In this model, the dynamics of the voltage
across the membrane V,, is described using a state
equation as

dv,
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where C,is the membrane capacitance, and E;, Ey,,
and F, are Nernst potentials (saturation potentials) for

potassium ions, sodium ions, and passive leak current

in the membrane, respectively. Parameters &x, &

and &, represent the conductance of potassium,
sodium, and passive channels, respectively. This model
provided the foundation of the shunting model and led
to many model variations and applications [5—7].

By setting C,, =1, and substituting z,=E,+V,,, A=g,,

B=Ey,+E, D=E,~E,, S =gy, and Si =&k in (1), a
shunting equation is obtained as :

% = —dx, +(B—x,)S{ (1) - (D +x,)Si(t)
t

(2)
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where z; is the neural activity (membrane potential) of

the #h neuron. A, B and D are non—negative constants
representing the passive decay rate and the upper and
lower bounds of the neural activity, respectively.
Variables S¢ and S} are the excitatory and inhibitory

inputs to the neuron. This shunting model was first
proposed- by Grossberg to understand the real—time
adaptive behavior of individuals to complex dynamic
environmental contingencies and has many applications
such as visual perception and sensory motor control.

2.2 Model Algorithm

The proposed discretely and topologically organized
model is expressed in 2D Cartesian workspace W of
the cleaning robots. By properly defining the external
inputs from the varying environment and the internal
neural connections, the neural activities of the unclean
areas and obstacles are guaranteed to stay at the peak
and the valley of the activity landscape of the neural
network, respectively. The unclean areas globally
attract the robot in the entire state space through
neural activity propagation, whereas the obstacles have
only local effect to avoid collisions. The location of the
ith neuron in the state space S of the neural network,
which is denoted by a vector ¢; € R?, uniquely
represents an area (a robot location) in W. In the
proposed model, the excitatory input resuits from the
unclean areas and the lateral neural connections,
whereas the inhibitory input results from the obstacles
only. Each neuron has local lateral connections to its
neighboring neurons that constitute a subset R, in S.

The subset R; is called the receptive field of the #h

neurophysiology. The neuron responds only to the
stimulus within its receptive field. Thus, the dynamics
of the Ah neuron in the neural network can be

characterized - by a shunting  equation as

dx; Li
— =A%+ B-x )T +2wlx;1)
j=1

—(D+x)I,T (3)

where k is the number of neural connections of the th
neuron to its neighboring neurons within the receptive
field R;. The external input I; to the #h neuron is

defined as I, = E, (if it is an unclean area) I,=— E,

(if it is an obstacle area) I;=0, (otherwise) where

E >> B is A very large positive constant.
The terms [/,}* + 3, w,lx,Jand {1] are the excitatory and
inhibitory inputs g‘:‘ and S/, respectively. Function [a]*
is a linear—above—threshold function defined as
[a]*=max{a,0}. And the nonlinear function [a]7is
defined as [e] =max{—a,0}. The connection weight
w,; between the th and Ah neurons can be defined as

w,j=f(!qi-qj|) (4)

where |9 91 represent the Euclidean distance

between vectors 9i and 9jin the state space, and
f(a) can be any monotonically decreasing function,
such as a function defined as f(a)= o (fo<a <ry)
f(e)=0, (if a2 1ry)

where w and ry are positive constants. Therefore
each neuron has only local lateral connections in a
small region (0, 7). It is obvious that the weight w is
symmetric. Note that the neural connection weights
that satisfy the fundamental concept of the proposed
approach are predefined at the neural network design
stage. A schematic diagram of the neural network is
shown in Fig.1

Figurel: Schematic diagram of the proposed neural
network for CCPP

In the proposed CCPP model, the robot path is
generated from both the dynamic activity landscape
and the previous robot location to achieve fewer
changes in navigation direction. For a given current
robot location in the state space S denoted by p., the
next robot location p, (also called "command location")
is obtained by.

P &= Tpu= maz{z+cy, j=1,2..., Kk} (5)
where c is a positive constant, and k is the number of
neighboring neurons of the p.th neuron, i.e., all the

possible next locations of the current location p..
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Variable z; is the neural activity of the jth neuron, and
y; is a monotonically increasing function of the
difference between the current and next robot moving
directions. Variable y; can be defined as a function of
the previous location p, , the current location p,. , and
the possible next location p;, e.g., a function defined
as ¥;= 1— T/ where Af, e[0,7] is the absolute angle
change between the current and next moving
directions. After the robot reaches its next location,
the next location becomes a new current location. The
current robot location adaptively changes according to
the varying environment.

The dynamic activity landscape of the topologically
organized neural network is used to determine the next
robot location. Whenever the neural activity at the
current robot location is smaller than the largest neural
activity of its neighboring locations, the robot starts to
move to its next location. Thus, the robot movement is
determined by both the robot speed and the neural
activity landscape. The moving speed of a cleaning
robot can be assumed to be slow because of its
cleaning task. In a fast changing environment, where
obstacles suddenly appear in front of the robot, the
neural activities at those locations will immediately
reduce to a very large negative value due to their very
large inhibitory input.

The proposed neural network model shares some
common ideas with the standard artificial potential
field and standard distance transform path planning
techniques : a topologically organized discrete map is
used to represent the workspace; each location uses a
number to represent its environmental information; the
target locations have the largest value; and robot
moves from a location with a smaller value to that with
a larger value. However, there are important
differences between the proposed model and artificial
potential field or distance transform based model. The
activity landscape of the network is
automatically changing due to the neural activity
propagation. Thus, it can deal with arbitrarily changing
environments, and will not be trapped in any deadlock
situations if a solution exists.

When the robot arrives in a deadlock situation, (all
the neighboring locations are either obstacles or
cleaned locations, all the neural activities of its
1eighboring locations are not larger than activity at the
current  location, because its neighboring locations

neural

receive either negative external input (obstacles) or
no external input ( cleaned locations), and all the
cleaned neighboring locations passed a longer decay
time as they were cleaned earlier than Location P.
Thus, for a pure artificial potential field—based
approach, the robot is unable to move away from such
a deadlock situation. In the proposed model, the neural
activity at the deadlock location P will quickly decay to
zero due to the passive decay term —Az; in (3).

Meanwhile, due to the lateral excitatory connections
among neurons, the positive neural activity from the
unclean locations in the workspace will propagate
toward the current robot location through neural
activity propagation. Thus, the robot is able to find a
smooth path from the current deadlock location
directly to an unclean location, just in the same way as
the conventional path planning from a start point to a
target point. The robot continues its cleaning task
until all the areas in the workspace become cleaned.
Thus, the proposed model is capable of achieving
complete coverage path planning.

3.ASolutiontoCCPP
3.1 Stationary Environment
There are a lot of stationary obstacles in stationary
environment, such as the corners in the room or some
obstacles which are stationary. One case is shown in
Fig. 2A
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Figure 2

Fig.2B shows the neighboring neurons structure of
the Fig2A. Variable 1, 2, ..., 8 denote neuron 1, ...,
neuron 8, which are lateral connections to the central
neuron C. The dynamic activity landscape of the neural
network is used to determine where the next location
is in the vicinity of the obstacles. The central neuron C
compares its neural activity with those of the other
lateral neurons. Simulation result shows that z,, z;, 3,

T5, Zs are negative neural activities, while z,, g, Z7

are positive neural activities. The next location will be
neuron 7, because it has the maximum neural activity.
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3.2 Dynamic Environment

The proposed neural network approach is also
capable of generating complete coverage paths for
cleaning robots in a dynamic environment. As shown in
Fig.3.

L] s 10 * »

Figure 3

First we set all initial neural activities to zeroes. The
robot starts from the location (1,1). When the robot
arrives at the location (6, 13), a set of L—shaped
obstacles suddenly appear in front of the robot. Then,
the neural activities at the place on the obstacles
immediately become very large negative values. The
robot can not move forward due to the suddenly added
obstacles. Later the robot will solve the problem just
like it did in the stationary environment. We can also
use this method to the multi—robots that will clean the
place cooperatively.
4. Conclusion

The proposed neural network approach enable the
cleaning robot to avoid the obstacles and cover every
area autonomously in a stationary or dynamic
environment. The workspace is discreted into many
neurons, but there are only local connections among
neurons and each neuron has at most eight local
connections. The robot path is generated through
dynamic neural activity landscape and the previous
robot location without any prior knowledge of the
dynamic environment, so the model algorithm is
computationally simple.
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