The development of a thermal neutron dosimetry using a semiconductor

반도체형 열중성자 선량 측정센서 개발

  • 이남호 (한국원자력연구소 원자력로봇랩) ;
  • 김양모 (충남대학교원대학교 전기공학과)
  • Published : 2003.11.21

Abstract

pMOSFET having 10 ${\mu}um$ thickness Gd layer has been tested to be used as a slow neutron sensor. The total thermal neutron cross section for the Gd is 47,000 barns and the cross section value drops rapidly with increasing neutron energy. When slow neutrons are incident to the Gd layer, the conversion electrons are emitted by the neutron absorption process. The conversion electrons generate electron-hole pairs in the $SiO_2$ layer of the pMOSFET. The holes are easily trapped in Oxide and act as positive charge centers in the $SiO_2$ layer. Due to the induced positive charges, the threshold turn-on voltage of the pMOSFET is changed. We have found that the voltage change is proportional to the accumulated slow neutron dose, therefore the pMOSFET having a Gd nuclear reaction layer can be used for a slow neutron dosimeter. The Gd-pMOSFET were tested at HANARO neutron beam port and $^{60}CO$ irradiation facility to investigate slow neutron response and gamma response respectively. Also the pMOSFET without Gd layer were tested at same conditions to compare the characteristics to the Gd-pMOSFET. From the result, we have concluded that the Gd-pMOSFET is very sensitive to the slow neutron and can be used as a slow neutron dosimeter. It can also be used in a mixed radiation field by subtracting the voltage change value of a pMOSFET without Gd from the value of the Gd-pMOSFET.

Keywords