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Abstract : In this paper, we address the robust adaptive backstepping controller using fuzzy neural
network (FNN) for a class of uncertain output feedback nonlinear systems with disturbance. A new
algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear
systems. The state estimation is solved using K-filters. All unknown nonlinear functions are approximated
by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that
the adapted weight error and tracking error are bounded. The compensated controller is designed to
compensate the FNN approximation error and external disturbance. Finally, simulation results show that
the proposed controller can achieve favorable tracking performance and robustness with regard to
unknown function and external disturbance.
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I, Introduction . w[ .. ]T "
. ; . control, Y€R is the output, @={@u - ax] R
The backstepping is one of the most important comTol, P
results, which provides a powerful design tool, for belpy b)) €R" are constant uncertain parameter
nonlinear {(and linear) systems in the pure feedback T _ ol .
i W ={wy,oeeee wif eR a bounded time
and strict feedback forms{11{2]. vectors, [ ‘] s bounded  tim
Recently, active research has been carried out ~varying disturbance vector, %, S v, 1sis],

in  fuzzy-neural control. It has been that
fuzzy-neural network(FNN){3] can approximate
any nonlinear function to any desired accuracy

are smooth vector fields in R, o:R—>R is a

smooth function, ¢(¥)#0 VyeR e denotes the ¢

because of the universal approximation theorem. column of the identity matrix /, and

This paper deals with robust adaptive control 0 I, Po Gy P
design of nonlinear output feedback systems under A=l 0 fo=] i P(y)= :
bounded disturbance whose bounds are unknown. 0 - 01, bon |+ b Ba

The compensated controller wusing FNN is
designed to compensate the approximation error
and external disturbance. The design procedure
follows the standard backstepping with adaptive Hurwitz, i.e., the system is of minimum phase.
estimation strategy for the upper bound of
disturbances. The new algorithm is a combination of
adaptive backstepping and fuzzy-neural network
based design techniques.

=5 Bt
Assumption 1: The polynomial B(S)“Zwb's is

Assumption 2: The sign of & is known.
Assumption 3: The disturbance (1) is bounded,
W=W"+e, where W' is optimal value and & is

reconstruction error.
2.Problemstatement

We consider a SISO nonlinear systems which can The T-S FNNI5] system includes a fuzzy rule
be transformed into the output feedback form [4]. base, which consists of a collection of fuzzy
i=Ax+bo(yu +¢u{y)+_i¢e('y)m +i%(y)wi [F~THEN rule in the following form:
Rulei:IF zis F!, THEN W is V'
= Ax+bo{yjutrd(y )+ y)a+¥(y W ; L
F a Wiy
y=elx W where £, and V' are fuzzy sets and W{:V) are

output. The center of gravity method is used for the
where ¥€R"i5 the state vector, ueR is the defuzzification
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o XVh@
W=t =VH(z)
Z 7'(z)
=}
where H(z) is fuzzy basis function vector.

3.Filtersandcontroldesign
3.1 K-filters for state estimation
Fallowing the filter and observer design in [2],

we have E=Al+hy+ron(y), 2
Q’:AOQWF(y,u)T, 3)
T O(P—IN n-p+l)
F(y, = D
where (y u) H’ In-p»l :}a(y)u (y)} f (4)
k=l k] A= A kel )

with & chosen so that 4 is Hurwitz.
We define the state estimate f=¢+Q79
9=[b,,,<--,£a,.,ax,~-,a,.,]' e R

To reduce the dynamic order of the  ~filter (3),
€ is generated by

Q7 =y, v E], ®
3=AOE+<D(y) )
A=Ad+eo(yh, 8)
vi=AT'A for JEp M 9

Lemma 1: From the fxlter (2) and (3), the state is
given by

x=6+Q070+¢ (10)
with £€ R, which satisfies
E=de+W(y W (1
Furthermore, let PeR™ be positive definite,
satisfying
PAy + Al P =61 12)

_1or
and let Ve 28 Pg, (13)
v ~-W¥(y,
Aly.yj= 2= F(y,)
y=yr , (14)
it can be shown that

Vs 2l + Stleall ST PO

Proof: A direct evaluation
E=i-Q70-¢ (16)
given (13). From (11) and (12), it is obtained that

s 1 .
V=T T
2(6‘ Pe+ePé™) an

=3¢l +£ PRy IW

=3[ + 26" PA(Y.y. )W+ P¥(y, )W 18)
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3.2 Adaptive control design

We start the robust adaptive control design with
the K-filter in Section 3.1 and the assumptions
introduced in Section 2. The approach to the control
design is backstepping with tuning functions, which
means that the design will start from the output
dynamics and will complete in 2 steps.

Let us define a number of notations:

ot i |
Z=y~y, Zpn=0 Zi=Vy =gy =,

o, _da;.
=[¢- vec( )r g lr —T] ) P2 aé
where @;, =L P, are stabilizing functions to

be decided in the adaptive control design, s =1/b, ,
P is an estimate of #, 6 are the estimate of 0
the subscript ith row of a matrix, and vec(-)
denotes a vector obtained by arranging the columns
of a matrix in one column. We set @ =¢&
Stepl: We start with the dynamics of the tracking
error zi. The derivative of zis
L=x+p(y)+ Yo, (y )W -y,
=@y +B,Vpa + @ 0+ 8+ V(Y)W -5, (19)

where ¥sa=n+Syi+aiand @ =5@, s=1/by  we
rewrite (19) in the form

LEE A AT G+ V(Y)W —b,(3. +8 )5 +b,z2 (20)
Then our choice of the stabilizing function is
& =-cz-dz -0, -o'g- \P(n(y)W

Z IIPA(y,y,)II‘ 1e3))

where § is constant design parameter.
Substituting (21) into (20) results in

=-¢2-4d, 2 +bApzz+52+‘Pm(y)[ W—W]
+{@ ~g=<y',+a7,>e.}’é-b,,<y+a.)¢

- f 8 ZLAP Ay, )| (22)

i=l

Two positive constants ¢ and di are introduced
for uniformity with subsequent steps in which 4i is
a coefficient of a nonlinear damping term counter
acting &2.

The choice of the update law for éis postponed

until the last step and we only select the first tuning
function



n=fo-¢(3+&)aln, (23)

However, the update law for $is designed at the
first step as

Sy sgn(b, (3. +&)n y>0.  (24)
Step i, i=2,- P It can be shown that
@, =0 (X, 5,0, V) i=2p (25)

The stabilizing functions @ for =2, 2P, are
designed as

Ot

@ == 2 — €2~ i —— )2,+kv,,|+g =X

i1

+6a*'(za +(or9)+a il l"r+aa 1y
oy 26 oV (26)

. Ba .
A Lt i
+o ¥ Ve —ay_“"y(x)(}’) w
It can be shown from (27) that, for i=2,--- P

Oai 2 Sy ~ O,y

Zi=—ziy—Gzi—dif ) zi+ Zi - »'8 -—ay—ga

i 0,7, ~ ‘P“)(y)[W W} —iaj,fzj

F=il =2 . (27)
The tuning funcnons are defined by

day
Ty = Tiu ~"87(DZ;

yi=2eenp (28)
Based on the tuning functions, the adaptive law is
designed as

O=Tr,, 29
Finally, at step # the control is designed as

1
= (a pn ey
* oly) * ety ) 30)

4 Stabilityanalysis
Define a Lyapunov function candidate
1., 1= Iblm 1 r
Vy=— ~87r'e 4
=35y NErRd +,‘.4d @D
Then from (20), (21), (23) and (24}, the time

derivative of Viis

s 1 o oar <
Vi=b,z5,-¢z ~d (5~ =&)Y +& T (I'r,-0)
24,

A 2,1
+:;lP(|)(J’)t: W_W—J - ;4—d~52
— ZP;B%(E +g11 He+E, )+E;—— (6' PY(W)
—z Ayl Z e - ¢

/‘l

Using (32), the derlvatxve of the Lyapunov
function

1,
Ba=tiron 33)

is expressed as
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o 1
V; =22 —c«z«-dl(zw-z—;—ew) —da{ 37 z2+_272,€2)z
i~ da, & 1
(T ~0 YO T iz ) =Y o g
(T -8 ) Y é%

#5201 ]+ 3@ PYOW)

4
*,274%17(8': +&f *’"'*53)"2'5;?"})‘3(}"}")"4 +2:23

[eed 7 £ 5 2
~Z, 8y] ‘{’(])(y)[Ww W] ZT“ I{ ) (34)

i=}
where W =W =Vn(z),
In the 7 step, let

1y Lor s
VpZVp—l+§zp+§VQ 14

(35)
The time derivative of Vs is
Vo=-$an-Lain Bt b - S ppacry
i=t i=l i
-Z-—-(& bEF gl ) +Z——-(s’P‘¥’(y)W)
oa, ¥ 7 z 5 2
_Az" Z; ay (1)(y) 7](21) —Zﬂ:wus H
+2 \P(,)(y)Vn(z,) - I7TQ4;} (36)
From (18), we have
_Zc,z, Zd(z, Ba,, jj & f
_fi L’(& +ei4- +s,)+§z. By'*}’,,)(y)ﬁ’,
2 oa;
\Pl/ W - -1
JT n(y) (H ) WO,
2 1 1 4 2
» 2 G o ) a7
»
Z;C,Z, +/3 (38)
where
01 1
s = Sag GPTAPYol v
X £ da,
= Q(Z —‘;yﬂ‘lf“}(y)ry(:o-z,‘va,(ym(z,)) o

Since ﬁ("W") is bounded, we can conclude from

(38) that ¥»is bounded, which implies thatz,8 ¢
and € are bounded.

5.Simulation
Consider the nonlinear system

=x+0(e" -1+ yw,
Yo =Ut W 4D

y:xu



we have Vo =V« =4 The filters are designed as

HEWR AR
HEMHHEN]
HEWHEHD

It can be obtained that

ki+% -1
1] p=|M &

sowoel] T Lk,

- (-

DX

+—.-_.
ke k: kk |

Following the steps presented in Section 4, we
have

ay =~cz~dy 2 ~&s ~(E; +e&” 'l)é“)’,’i/. satf z()

1,1 1, .
—R—(d—l+:i-;-)z1 ||PA(y,yr)‘l (42)
day , day ; Ba, -
o=~z —CZ:—df —F 22 v ks b+ — 2+ —F,
P=masGnodlm ) PR
S — y ] 0m . By
+— i+ L H(Ey e - P+ —y, + —=T'1y
ay{’;’ (% )]ay,y Er
Ay i Doy o day
g Wy e ) Wy S00H( 2y
oW, 8y S (43)
and ¥=@2+y,
The adaptive law is obtained as
A P! .
0=(z.—§zz)(sz+e’—1)—(y,+a,)e,z. 4
V=02, 28 yiz)- zym(z,)
2 ay 1 1 1 (45)

In the simulation study, we set =05, The
desired trajectory was set as k=3, k=2
a=a=d=d=T=0=1 The desired trajectory
was set as Jr=1-¢ost The disturbance in the

simulation was set to W(1)=0.2 cos10t

Fig. 1, 2 show the system output together with
the desired trajectory and the control input,
respectively.

6.Conclusions

In this paper we have presented a solution to
robust adaptive control of nonlinear output feedback
systems perturbed by disturbance with unknown
bounds, The proposed control design has removed
the requirements of the bound of uncertain
parameters and the bound of the disturbances in
nonlinear robust adaptive control. The proposed
algorithm ensures that the tracking error converges
to an arbitrarily smalli neighborhood of the origin,
while maintaining the boundedness of all other
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variables.
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Fig. 1. Reference and Qutput under disturbance

-im.w H i
°. 400 a.08 2.0 12.9 .. 20,3
Time (a¥

Fig. 2. Contro! input under disturbance (4 =0.05),
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