Study on the analysis of the Magnetic Tomography System using two poles and four poles.

Eun Sik Park and Gwan Soo Park
Dept. Electrical Engineering, Korea Maritime University

Abstract - 본 연구는 탐지대상물체의 형상인식이 가능한 비접촉, 원격 탐지장치의 개발에 관한 것이다. 본 연구에서는 2극 또는 4극의 정지기자를 이용할 때 탐지 대상 물체의 영향 주기장의 자연 해석을 토대로 시행하고 정지기자를 원격으로 인식하는 원격 감지 시스템을 설계하고 제작하여 특성을 분석한 결과 2극과 4극 시스템 모두 투과율의 변화를 감지할 수 있고, 특히 탐사 물체의 위치 파악에는 2극 시스템이 4극 시스템에 비하여 좋은 특성을 보였다.

1. 서론

2. 본론

2.1 개요

Magnetic Tomography system은 탐사체의 투과율 변동을 비접촉적으로 감지하는 시스템으로서 Figure 1은 Magnetic Tomography의 개요도이다. 코일과 같은 원통형 센서 안에 어떠한 탐사체가 있다고 가정했을 때 그 탐사체의 투과율은 공기와는 서로 다르다. 따라서 탐사체가 없을 때, 즉 투과율이 0일 때의 자속밀도 B 값을 검출한 후 탐사체가 있을 때의 투과율 변동에 따른 B값의 차이를 검출한다. 이 자속밀도 변동량 ∆B의 값으로 탐사체의 위치 및 크기, 탐사체의 개수를 알 아내는 것이 목적이 다. 탐사체의 위치를 추적하기 위하여 이산 탐사체의 비 투과율 값과 위치를 연관하여 정확하게 위치 정보를 얻기 위해 본 논문에 따르는 데이터베이스를 구성하였다.

![시스템 개요도](image)

본 논문에서는 자속밀도 변동량의 값을 검출하기 위하여 2극과 4극 Magnetic Tomography를 설정하였다. 홀 센서의 위치는 각 코일 간한 각각 24개를 사용하였다.
2.2 자세해석

탐지대상 탐사체에 의한 미소 자기장을 탐출할 수 있는 시스템을 해석 및 설계하기 위해서는 자성체의 결정 자기 이방성(Crystal Anisotropy)과 형상 자기 이방성(Shape Anisotropy) 효과, 기계적 Stress에 의한 전자기적 영향, 자기 Hysteresis에 의한 영향을 해석할 수 있어야 한다. 즉 아래와 같은 Maxwell 방정식의 전개에서

\[\nabla \times H = J \]
(1)
\[B = \mu_0 (H + M) \]
(2)
\[B = \nabla \times A \]
(3)

식 (2)와 같이 자세밀도 B와 자세의 세기 H, 그리고 자세양 M을 독립변수로 추이야 한다. 이것은 자성체의 이방성이나 Hysteresis 현상에 의하여 자세의 세기 H와 자세밀도 B의 선형 함수적인 관계가 더 이상 성립하지 않기 때문이다.

\[H = \mu B - u_0 M \]
(4)
\[\nabla \times (\nabla \times A) = J + \mu_0 \nabla \times M \]
(5)
\[-(\nabla \cdot \nabla) A = J + \mu_0 \nabla \times M \]
(6)

여기서 \(u \)는 저항율(Magnetic Susceptibility), \(u_0 \)는 비 투과율의 역수이며, 이 식에서 저항율 \(B \)은 Tensor로 처리함으로써 자기 이방성을, 저항양 M을 변수로 처리함으로써 Hysteresis를 해석할 수 있게 된다. (8, 9) 식 (6)으로부터 유한요소법(Finite Element Method)을 적용한다.

2.3 Magnetic Tomography의 설계

그림 3은 2극과 4극 자세 발생기의 구조이다. 따라서 모든 조건은 같은 상황에서 전류의 범위만 바꾸어서 2극과 4극을 비교 할 수 있다.

![그림 3 자세 발생기의 구조](image)

우선 극수에 따라서 어떠한 영향을 미치는지 알아보기 위하여 2가지로 설정을 나누어 측정하였다. 우선 탐사체의 비 투과율 고정시키고 위치의 변화에 따른 특성을 파악하고, 다음으로 탐사체의 위치를 고정시킨 후 비 투과의 변화에 대한 특성을 분석한다.
그림 4극 탐사체가 좌측으로 이동할 때

그림 6과 그림 7은 탐사체가 좌측으로 이동할 때 2극과 4극의 ΔB_y값에 따른 그래프이다. 4극에서 ΔB_y값의 최대 값이 2극에서 ΔB_y값의 최대 값보다 높음을 알 수 있다. 하지만 1번 위치, 즉 탐사체가 중앙에 있을 경우에는 2극의 값이 높음을 알 수 있다. 또한 탐사체가 좌측으로 이동할 경우에는 2극과 4극의 그래프의 파형이 다를 수 있다. 2극에서 좌측으로 이동할 경우에는 수직자기장이 존재하는 곳에서 수평으로 이동하기 때문에 4극에서는 수평자기장이 존재하는 곳에서 수평으로 이동하기 때문이다.

그림 8 2극 탐사체가 상단으로 이동할 때

그림 9 4극 탐사체가 상단으로 이동할 때

그림 10 2극에서 탐사체가 중앙에 있을 때

그림 11 4극에서 탐사체가 중앙에 있을 때

본 논문에서는 2극과 4극 자세를 이용한 Magnetic Tomography system을 설계하고 비교 분석하였다. 4극에서는 탐사체가 할선에서 나가갈수록 By값은 크게 중상에서는 2극보다 작은 값을 알 수 있었다. 또 2극은 불체의 위치에 따라 분격이 다르고 탐사체가 중앙에 있어도 탐사자가 가능하다는 것을 알 수 있다. 따라서 다음과 같은 결론을 얻을 수 있다.

1. 2극 자세 발생기의 구조가 4극 자세 발생기의
구조보다 우수하다. 2단계 발생기에서는 비 투자율이 10 정도의 탐사제도 충분히 감지가 가능함을 확인하였 다.

둘째, 2단계 발생기에서 탐사체의 위치가 이동할 경우 감지신호의 파형으로 탐사체의 위치와 방향을 판단 할 수 있었다.

본 연구에서 개발된 2단계 Magnetic Tomography는 배관 속을 흐르는 탐사체의 비 투자율의 변화를 감지하 여 탐사대상의 크기, 위치를 추정할 수 있는 시스템으로 배관 내부를 흐르는 탐사체를 실시간으로 간편하게 추적 할 수 있음을 보였다. 본 연구에서 개발된 시스템은 배 관시스템에 설치하여 원거리, 실시간, 비접촉 모니터링 에 사용할 수 있으며, 철을 다루는 배관시스템이나 오, 폐수의 모니터링에 용용 가능할 것으로 생각된다.

탐사체의 크기와 위치뿐만 아니라 모양에 관한 정보도 얻기 위해서는 자기차량센서 (Magnetoresistance sensor)와 같이 감도가 더욱 높은 센서를 사용하여 100 mG 정도의 측정감도를 갖는 시스템이 개발하여야 할 것으로 판단된다.

(참고문헌)

 Translated under the title Matematicheskie a komp`yuternoi tomografii. Moscow: MIR, 1990.

