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Topological analysis of Chaos Characteristics in A Power System

S.Y. LS. S tee T Y. U= K Park
"Seoul National University "EESRI ~Norheast China institute of Elec. Engin.

Abstract - This paper proposes a totally new method in the
chaos characteristics analysis of power systems, the introduction
of topological invariants. Using a return histogram the bifurcation
graph was drawn, the periedic orbits and topological invanants
the local crossing number, relative rotation rates, and linking
number during the process of period-doubling bifurcation and
chaos were extracted. This study also examined the effect on the
topological invariants when the sensitive parameters were varied.
In addition, the topological invariants of a three-dimensional
embedding of the strange attractor was extracted and the result
was compared with those obtained from differential equations.
This could be a new way for a state detection and fault diagnosis
in a dynamical system.
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1. Introduction

Loads in a power system have become rather
complicated in recent years. It is difficult for the
power system to stay in one equilibrium point, and it
may sometimes operate beyond the limit of its
stability. This situation creates concern regarding the
bifurcation and chaotic attractors in practice. This
originates from the nonlincar and deterministic
structure of the power system itself but not to
random load disturbances [1]. Therefore, chaotic
analysis can lead to a better understanding of the
problem of stability and to become useful techniques
for the control and operation of power system.
Because the essence of chaos is the strange attractor,
it is important to study the characteristics of the
strange attractor.

Currently, there are two main approaches for
analyzing the chaotic time series in a dynamical
system. They are metric [2] and topological
approaches [3]-[6]. The metric approach is based on
the distance between the points in the attractor [4). In
this approach it is customary to compute the fractal
dimension, the Lyapunov exponent, the spectrum
singularities, etc. It generally requires a large amount
of data and degrades rapidly with additive noise. The
topological approach is based on the organization of
unstable periodic orbits embedded in the strange
attractor [5]. It is responsible for creating a strange
attractor using stretching and squeezing mechanisms.
The extraction of these quantities from the time
series data is robust against noise and is
independently verifiable. These quantities are defined
as topological invariants that are effective in modeling
the dynamic system.

This paper is organized as follows. The next
section introduces the topological invariants, the Local
crossing number, the Relative Rotation Rates and the
Linking numbers, and shows how to extract them
from the periodic orbits. In Section 3, the topological
invariants in a simple power system are calculated

and the stability is analyzed as the parameters are
changed.

The topological invariants were also extracted
directly from the periodic orbits reconstructed from
the time series and the result was to those computed
obtained from the equation. The conclusions are
reported in Section 4.

2. Extraction of topological invariants

The local crossing number is the number of
half-twists of the period-doubled orbit along the
tubular neighborhood [6]. It is an important index that
describes period-doubled process.

The topological organization of all the unstable
periodic orbits extracted from the time series is
determined by calculating the relative rotation rates
and linking the numbers of all pairs of periodic orbits,
the self-relative rotation rates and self-linking number
of each individual periodic orbits.

The RRR describe how often one orbit rotates
around another on average. The sum of the RRR
notes over all the pairs of initial conditions is the
linking number that links the two periodic orbits [5].

The topological properties are closely linked to
physical processes and are often insensitive to noise
changes, which are the advantage in model the
system [4].

3. Extraction and analysis of topological
invarients in a simple power system

This section presents the topological properties of
double-periodic bifurcation and chaos on a detailed
model.

3.1 A Simple power system
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Fig. 1 A simple thrce-bus system

Consider the power system shown in Fig. 1, which
consists of a load that is supplied by two generators
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{11, An induction motor in parallel with a constant PQ
load is used to represent the load. The equation of
this system consists of four state variables that
correspond to the generator angle (3x), the generator
angular velecity (@), the angle (8) and the
magnitude (V) of the load voltage.

The load reactive power is chosen as the system
parameter, so that increasing Qi corresponds to
increasing the load reactive power demand. Ref. [1]
provides detailed system equations of this model.

Consider the power system shown in figure 2 that
cons
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3.2 Topological properties of double period bifurcation

Many studies have found that chaos exists via a
period-doubling route in this model (see Ref. [1]). Fig.
2 shows that the power system is stable near O
=11.39.

As O is slowly decreased, the period 2 orbit
grows at Q1 =11.3885, and then undergoes a sequence
of a period—-doubling bifurcation, leading to chaos. Fig.
3 shows several stable periodic orbits in the sequence
of period doubling discussed above.
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Fig. 2 System bifurcation diagram in the (Q,V) plane
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Fig. 3 Period doubling cascade to chaos

The topological invarants extracted from the
stable period~doubling orbits are shown in Table 1
and Table 2. The result in Table 1 shows that local
crossing numbers increase gradually with as the
period doubles and on the continuous periodic orbits
there is an extrapolation relation. Since there is a
close relationship between the local crossing number
and the power spectrum of the orbit, the harmonics
components are necessarily increased with periodic
doubling.

Table 1. Local crossing number of period-doubling
bifurcation
Period 1 2 4 8

L of § 0 1 3 5

Lof V [t} i 3 S

Table 2. Relative rotation rates and linking numbers
of period-doubling bifurcation

Period 1 2 4 8
1 0 172 -2 ~1/2
2 120 -12-1/4  -12-1/4
4 (~12)2,-1/4,0 (-1/2)2,-1/4,-3/8
8 (-1/2)2,(-1/4)2,-3/8,0
(a) RRR of period-doubling bifurcation
Peniod 1 2 4 8
i 0 1 2 4
1 3 6
5 13

(b) L of pericd~doubling bifurcation

From the above analysis it can be seen that, the
topological properties of period 2" contain all the
topological information in the period 122" orbits.
This means that the orbit structure from period 1 to
period 2" can be determined if period 2" orbit twist on
the period 2" orbit is known.

3.3 Topological characteristics in chaos state

For the forth order model chaos is observed in the
approximate range @Q;=11.377-11.382 (see Fig. 2). We
can obtain the fundamental periodic of the unstable
period orbit at Qi=11.379 by the return histogram,
which is approximately 2.1s. According to the
relationship between T and ©, 0=21/T=2.99, which
is the imaginary part of the complex eigenvalues at
i=11.379. The unstable period orbits can then be
extracted (see Fig. 4) and the topological invariants
can be calculated (see Table 2).

ot o1 o1 o1z 03¢
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Fig. 4 Extraction of period orbit at Q=11.379

Indeed there is another chaos region induced from
the period-doubling bifurcation around ©;=10.89 [1]
(fundamental period T=1.67s).

The region corresponding to Qi=10.89 is referred to
as the left chaos; the region corresponding to
Q:i=11379 is known as the right chaos. The
topological invariants of the left chaos are shown in
Table 4. The results in Table 3 and Table 4 are
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apparently different, namely, the topological
organization of two attractors are different. Ref. [1]
have noted that the attractor in the left chaos region
will disappear as Qi is increased, while the attractor
in the nght chaos region will lead to a voltage
collapse as Qi is decreased. On other hand, the results
in Table 3 and Table 4 suggests that the topological
invariants are sensitive to changes in the parameter
and system structure, which will contribute to the
system state detection and fault diagnosis.

Table 3. Relative rotation rates at Q;=10.89

period! 2 3 4 6
1 0 -12 -3 -1/4 -143
2 -12,6 173 -1/4 -1/3,-1/6
3 (17320 -1/4 (-173)2,-1/6
4 (-1/4)3,0  -1/4,.1/%
6

(-1/3)2.4-1/6)3,0

Table 4. Relative rotation rates at @1=11.379
6

period] 2 3 4
1 0 172 -1/3 -1/2 -1/3
2 -12,8 -13 -1/72,-1/4 -1/3,-1/6
3 (-1/3)20 -13 (-1/3)2,-1/6
4 -1/ D2,-1/40 173
6 (-1/34,-1/6,0

3.4 Topological characteristics from time series

If a model of the power system is not known
precisely, and only the measurement data le. time
series, is available, then the topological invariants
can still be extracted. First, it is postulated that
system model is not known and only the time series
V{(t) of the magnitude of the terminal voltage, which
are the simulation results at ©1=11.379, is available.
Because the topological invariants can not be
described unless a threc-dimensional embedding can
be found, a three-dimensional embedding of the
strange attractor needs to be constructed. An
integral-differential filter is constructed {4}, which is
easily implemented by an electronic circuit and
reduces S/N (Signal/Noise) ratio.

Y= ;}_V(f) e ~limd (5)
Y,= Wi 6}
V()= Vit 1) — Vi—1) 60

The fundamental period of the attractor is obtained
as T=21s. The attractor is projected on the
phase-phase Y2-Y3 and the unstable periodic orbits
in it are extracted (see Fig. 5.

Fig. 5 Extraction of the period orbit at 1=11.379

The topological invariants are the same as that
shown in Table 4. However, we cannot be sure that
the topological organization of the two attractors {(one
is from the time series and the other from the model)
is equivalent. In order to identify whether the two
attractors are equivalent, further research using
template and symbolic dynamics theory will be
needed. The discussion in this section is more suitable
for diagnosing a fault in a practical power system.

4. Conclusions

This study analyzed the topological characteristics
of a simple power system. The analysis of the
topological invariants during pericd-doubling
bifurcation show that the period 2" orbit contains all
the topological information of the previous periodic
orbits {(period 1, 2, 2., 2" orbits).

The topological invariants can identify the attractor
belonging to the different chaos regions and the
oscillation period is easy to obtained by a return map
and a return histogram.

A three-dimensional embedding was successfully
constructed from the time series, and topological
invariants of time series were found to be the same
as those of the fourth-differential equations. It is
useful to analyze the characteristic of a power system
from a practical perspective when a fault takes place.
The RRR can be taken as a sensitive factor in a fault
diagnosis since they indicate whether or not the two
dynamic systems are equal. Note that the topological
invariants are only sensitive to a parameter variation
that leads to qualitative changes in the system, while
they are insensitive for the guanfitative changes in
the system.

In future work, it is hoped that to model the
dynamics by a horse-holder template and symbolic
dynamics theory based on the topological invariants
extracted from the model or the experimental data
sets.
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