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ABSTRACT: A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous
membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear
wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower
ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an
appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are
presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to
wave action. 1t is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length
taking major fraction of water colurmn, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types
and stiffness, the permeability on the membrane dissipating wave energy.

1. Introduction

Flexible membranes offer an attractive means of providing
temporary protection from waves in semi-protected regions.
In addition, it has desirable characteristics of being
lightweight, transportable, reusable, relatively inexpensive, and
rapidly deployable (Thomson et al. 1992). Thus, it may be an
ideal candidate as a portable/ temporal breakwater for the
protection of various coastal/offshore structures and sea
operations requiring relatively calm sea states (e.g. Fowler et
al, 199).

Aoki et al. (1994) have provided a theoretical
solution for bottom-mounted, sub-merged, membrane
structure in waves. The hydrodynamic characteristics of
various buoy/membrane systems that vertical flexible
membranes are attached to the floating buoys are
investigated by Kim & Kee (1996), Kee & Kim (1997), Cho
et al. (1997, 1998).

Kee (2001a, b), Cho & Kim (2000), Kee (2002) have studied
the oblique wave interaction with buoy/porous-membrane,
horizontal ~ porous-membrane, and  horizontal/vertical
porous-membrane.
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Kee et al. (2001) numerically investigated the hydrodynamics
properties of triple vertical—porous—membranes interacting
with linear oblique waves. The triple vertical porous
membranes hinged at the beneath of the pontoon that is
water surface pierced and fixed for simplicity. Those
membranes are extended downward and hinged at some
distances from seabed, which can allow the passage of
sediment.

In this paper, the performance as wave barrier to
wave action and the motions of pontoon and clump weight
restrained by mooring lines are numerically investigated. The
fluid motion in the multi-sub fluid domains is idealized as
linearized, two-dimensional potential flow and the equation
of motion of inextensible and porous membrane is taken to
be that of a one-dimensional membrane of uniform mass
per unit length subject to a constant tension. The pontoon
that provides required a large initial constant tension on the
membrane is assumed to be rigid and uniformly long in the
longitudixml direction so that two-dimensional analysis can
be applied. In addition, it is also assumed the heave motion
of floating structure is negligible for simplicity due to large
initial tension of membranes.

The solution of such complicated hydroelasticity
problems with a rigid body can be obtained by solving the
First, the
hydrodynamic interaction of oblique incident waves with a
rigid body and multi-layer porous-flexible bodies was solved

following three problems simultaneously.
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by the distribution of the simple sources (modified Bessel
function of the second kind) that satisfy the Helmholtz
governing equation. Second, the interaction of the pontoon
and triple membranes is taken into consideration through
appropriate boundary conditions at three hinges beneath the
pontoon. Third, the velocity potentials of wave motion are
fully coupled with triple porous membrane deformations
and viscous damping due to porosities based on Darcy’s
law. The theory and numerical results are validated through
energy relation for non-porous cases and conversance tests
for various porosities. Using the developed four-domain
boundary integral techniques, the performance with various
parameters of the pontoon and porous membranes are

thoroughly examine
2. Theory and Numerical Methods

We consider the interacton of a floating pontoon with
vertical  triple with
obliquely incident waves. The membranes can be hinged at

porous membrane wave barriers
the beneath of pontoon and tip of a floating clump weight
that is composed of steel frames restrained by moorings.
Assuming ideal fluid and harmonic motion of frequency

(w), the velocity potential of an oblique monochromatic
wave can be written as @(x, y, z, ) = Rel ¢(x,y) e'** ],

where k.= k(sin® is the wave number component in

the z direcion and @ is the angle(wave heading) of a

plane monochromatic incident wave of amplitude A,

wavenumber £, and wave heading () is given by

—_ lgA COSh ko(y + h) ikox
w coshk i ¢ (1

$,=

where k,=#,sing, w'="Fk, gtanh £} with g and /1 being
the gravitational acceleration and water depth,
complex velocity potentials, ] 1 ] 2, @ 3 and
fluid domains 1, 2, 3 and 4 (see Fig. 1), then satisfy the
Helmboltz Vi, —ki4,=0,(/=1,2,3,4) as

governing equation and the following linearized free-surface

respectively. The

@ 4, in four
equation

( F}:), bottom  ( Fb), and radiation condition:

9
—wl b et =0 (on Iy @
J¢
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where FC is the vertical truncation boundaries at far fields

and n={(n,, ny) is the unit outward normal vector.

Along the wvertical matching boundaries in fluids at

x=— W2,0, + W2, the pressure and normal velocity are

required to be continuous as follows;

d¢, 9P,
¢i— b, ox . ox a I’y ®)
w
o
r 1

Mooring line

r. I L, | v h

[\ ci <y Fb

Fig. 1. Coordinate system and integration domains

The scattered potentials must satisfy the following linearized
kinematic boundary conditions on the membrane surface based
on Darcys law that the normal velocity inside of membrane
with fine pores is linearly proportional to the pressure
difference between the two sides of the membrane (Wang &

Ran 1993).

d¢ a¢ : B .
a—x‘l:-—# :—la)f%-?pla)((ﬁ;—sbgﬂ) (6)
where ;£ is constant coefficient of dynamic viscosity, 0 is

constant fluid density, and B is a material constant called
permeability having the dimension of a length, and the harmonic
membrane motions (y, ) = Re[ £(3) ' *<*~™]. For simplicity,
the heave motion of the buoy is assumed to be negligible under
large initial tension of membrane. Then the boundary condition

on the floating buoy is

i, . ag,
%—’+zw{771nx+77;5n9}+ o0 =0,/=1,2,3,4(on I'p) )

where 7iand 73

represent complex sway and roll responses. To solve the present

ng=xn,~yn, and the symbols

boundary value problem, a four-domain boundary integral equation

simple
developed, which can be used for arbitrary bottom topography.

method using sources along the entire boundary is
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Applying Green's second identity in each of the

domains to the unknown potentials ¢, and imposing the

relevant boundary conditions Eqs. 2~7, the integral equations in
each fluid domain can be written as

Cort [ [ kKT~ K (k0|8 dr+
f F([ kK (k) 3L — ik K (k9| dl+

frﬁ[¢/sz1(kzr)%dF+ i0 Ky( kD7, n,+ 0y ng+

Ko k-2t art

f Fm[qﬂ,{k,Kl(kzr)g% —s,—f‘; ipa)K,,(kzr)}-l—
5B ipaK (k18 1,1+ 5 i § DK (k, 7]+

07 g 0(1—
{ LK K (K )5hdl=00=1,23.9) ®)
where C is solid-angle constant, and v = a)z/ g is the

K o ad K,
is the modified zeroth-order and first order Bessel function of the

infinite-depth wave number, s,=1, sy=—1,
second kind and # is the distance from the source point

(%, y)to the field point (x,y). In fluid domain [II,H]
and [UI,VI] backward side of front membrane and forward side

of rear membrane is coexist with each same spacing (W/2).
Thus, in domain [I[II] and [HI,VI] ,

sy= s3=1 are for backward side of front membrane and
forward side of rear membrane respectively.

S;= s3==1, and

The disturbance potentials must satisfy the following
linearized dynamic boundary conditions on the membrane

surface such as the discrete form of each equation of membrane

motions for j— th element;

pi in= diian) (1), = Ty (TE;') + T ("23%) .
=-ml;0®(£) (on T andi=1,2,3)
&)

where

(GeJd) = (&)~ (€D, J(aE), (1),

b
is the length of the j— fh segment of each membrane, and
(AE[)i={(li)j+(l,-) }/2

G+ 1) .

The geometric boundary conditions at the hinged points

and the top connection points of membrane are &,=0 at

yi=—(h~c),é,=n+ R;ny at y,=—D. R, is a
distance from each connection point of membrane to rotation
center of pontoon.

Next, we consider the rigid-body motion of a buoy. As
mentioned before, it is assumed that the heave response is
negligible due to large initial tension. The coupled equations
of motion for sway and roll are given by

M~ 09X=F,~(Kut K)X- 3 (FD, (g
where X is displacement of sway and roll, M is a mass matrix
of pontoon, F, is hydrodynamic forces and moments on
pontoon, K s is the restoring forces and moments due to the
hydrostatic pressure, K, is sway and roll mooring stiffness
coefficients including the effects of pretension. The symbol

(Fyp) ,.,(1=1,2,3) is forces and moments on the pontoon
caused by the initial tension of membranes at the connection

points between membranes and pontoon.
(F,=CT)

[ — sin a; ]
R cos( 8,4 s;n3)cos a,— R;cos( B;+ s;n,)sin a;
1)

where @; is angles of membrane at the connections with

is the radial
distances from the center of rotation of pontoon to each

respect to the y axis and the symbol R;

connection point on pontoon, $;= $z=—1, s3=+1  and
By is angles of membrane at the connections with respect to

center of rotation of pontoon.

So far, we have obtained integral equation (Eq. 8) for
£, and
7, (sway), 74(roll) (Eq. 10).
they need to be solved
If we discretize fluid domain 1 and 4 by

NE, 3, we have
¢ ,(/=1,2,3,4),

£,6=1,2,3,) and two unknown motions

¢,,1=1,2,3,4, and equation of membrane motion
equations of pontoon motions
They are mutually coupled, so
simultaneously.
NE | 4 segments, and domains 2, 3 by
2 NE, ,+2 NE;; unknown for 3N,
unknown for
( 7., 73) of a floating pontoon. Therefore, NT=2 NE
+2 NE,;4+3 N, +2 number of linear simultaneous equations
has to be solved for a floating pontoon with membranes hinged
at some distance from the sea bed.
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3. Numerical Results and Discussions

The program
developed as described in the preceding section was used to

four-domain  boundary  element
demonstrate the performance of a floating pontoon/membrane
wave barrier that is restrained properly with linear moorings
in oblique incident waves. The computationai domain is
defined as in Fig. 1. The vertical truncation boundary is
located 3-4 water depth away from the edge of a floating
structure to ensure that local wave effects are negligible. The
checked

non-porous

numerical results were against the

energy-conservation formula for system, and

conversance test for various porous coefficients.

The performance of the floating pontoon/triple membranes
system as wave barrier depends upon several parameters,
depth, the width, draft, height
clearance between the bottom of system and sea, denoted by

water of pontoon, and
h,W,D,H,c and the excess buoyancy of the system, mooring
line stiffness, and permeability of membranes, T, 7/K, and B,
respectively. The toe angle of mooring attached to the side of
pontoon is The floating pontoor/membrane system allows exactly
same spacing between membranes and bottom clearances between
the hinged points and sea floor ¢;,7=1,2,3 for each region.
The convergence test of the developed BEM program has been
conducted for the porous or non-porous test system with design
parameters Wh=10.5, H/h=0.25,T/K=0.1 (mooring type 3
as show in Fig. 8), D/A=0.2, ¢ ,/h=0.0625,and 6=0r.

—&— |:98, 11:50
Q- 1126, 11:64

—v— 1162, i1:84

—7 - 1244 1128

R2+T =1

Fig. 2. Energy Relation for a system with non porous membrane

Fig. 2 shows that the energy relation is satisfied under
the error- of 4% along the whole non-dimensional wave number
kh for non-porous system. Fig. 3 shows the convergence of

reflection coefficient for porous system with permeability of

B=1E—17 as increasing the number of segments in outer and
the number of total
N=244,128 gave

sufficient accuracy, and thus was used for the ensuing further

inner fluid domains. From those tests,

elements in the outer/inner fluid domain

computation.

The Fig. 4 show the transmission coefficients against various
permeability coefficients for a test system. It is interesting to
note that the higher porosity coefficient smudges the choppy
spikes of transmission coefficients along whole the
non-dimensional wave frequency. Thus the performance for
higher permeability coefficient can be better or worse against
around

corresponding  frequency bands, especially Dbetter

0.8<kh<2.2,kh=>3.8 and worse on £4=(0.5,2.2,3.3

08
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Fig. 3. Convergence of transmission coefficients for a system with

porous membrane and for B=1E£—7

Fig. 4. Transmission coefficients of various permeability B
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The transmission coefficient and non-dimensional
sway displacement of pontoon and clump weight
normalized by wave amplitude for a porous test system
with varying mooring line stiffness and are shown in
Fig. 5, Fig. 6 and Fig 7. As the mooring line stiffness
is increased, the transmission coefficients and sway
motions of pontoon and clump weight respectively are
gradually decreased the all

intuitively performance

along frequency
The based
transmission coefficient is significantly enhanced on the
higher wave frequency region on 3.0<kk as the strong

mooring line stiffness is increased. However, the effects of
mooring stiffness on the performance are not significant for

as

expected. on

the lower frequency range when it compared to that of
higher frequency range.

0.0 5
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0 TIK=0.1
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Fig. 6. Sway motion of a pontoon for various mooring stiffness
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The various mooring types applied to the floating pontoon
depicted in Fig. 8. The
type with
T/K=1(.1 for all moorings are shown in Fig. 9.

membrane  breakwater are

transmission coefficient for various mooring
stiffness
The effects to the performance as breakwater by mooring
type2 are slightly improved compare to that of no mooring
around lower frequency range; however, it is worse on the
higher frequency range. The other mooring types show the
much improved performance along the wide frequency range

compared to that of the previous no mooring and type2.

1.0 4

0.8 4

0.6

TY
044 !
:&7 OOOO —@— no mooring

0.2 4 O - type
—v— type 2
—  type3

0.0 T

0 1 2 3 4 5 6

kh

Fig. 9. Transmission coefficient of various mooring types

The effects of various pontoon drafts or widths on the
transmission coefficients are shown in Fig. 10 and Fig.
1. 1t that the
consisting of deeper draft or wider floaters has, as

can be seen breakwater system
intuitively expected, better efficiency as a wave barrier.
the the

non-dimensional frequency of 1.5<kk<2.5 In particular,

However, reversed trend appears around

it is noted that the transmission coefficient associated
with the shallow draft pontoon exhibits higher wave
transmission along the low frequency range. The widest
test model with Wh=1 has excellent performance
along the

2.25kh<3

the whole frequencies except range of

T w —e- dH=10
f % [ o dH=08 ‘
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Fig. 10. Transmission coefficient of various drafts of pontoon

1.0

—8— Wh=0.5

00 T T T T

kh

Fig. 11. Transmission coefficient of various width of pontoon

The transmission coefficient for the varying incident
wave heading for a test system with porosity same
B=2.5E—7 on triple membranes is shown in Fig.
12. The performance as wave barrier is generally
excellent for the wide range of frequency and wave
headings except possible resonance frequency around

kh=1.5
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Fig. 12. Transmission coefficient for various wave headings and a

porous test system with B=2.5E -7

4. Summary and Conclusion

A two-dimensional boundary integral method has been
developed for the four-fluid sub domains split by triple
vertical thin membranes. Using the developed program code,
the performance of the floating pontoon with multiple
porous membranes in oblique waves was tested for various
breakwater design parameters, wave conditions, and
permeability. From these results analysis, it is shown that
the multiple porous membranes system can significantly
increase the overall wave blocking efficiency in normal and
oblique incident waves. The deeper draft of pontoon or
wider pontoon enhances the wave blocking efficiency along
the wide range of frequency.
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