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An application of a short time expansion of
the heat kernel by the generalized Wiener
functional*

By YooN TAE KIM

Using a short time expansion of the fundamental solution of heat equation
by analysis of Wiener functional with the help of Malliavin calculus, we ob-
tain the asymptotic expansion of the mean distance of Brownian motion on

Riemannian manifolds.
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1 Introduction

Let (M, g) be an d-dimensional compact smooth Riemannian manifold and X (¢) be
a Brownian motion on M starting at p € M. Let v, = d(X(t),p) be the radial part
of a Brownian motion on M where d is the Riemannian distance induced by a Rie-
mannian metric g. We interoduce the several curvatures. I;;; are the components
of the curvature tensor and p;; are the components of the Ricci curvature. Also
T = E?:l pii is the scalar curvature. Let ||R||? = 3 (Ryi)? and |p]|2 = Y (pij)%
Kim and Park(2002) obtained the asymptotic expansion of the mean distance up to
order 3, that is,

E[y*(X(t),m)]

= nt— éT(m)t2 + f)% ( —6AT(m) — | R(m)|)* + ]|p(m)||2)t3 +o(t®) as t 0.

Let p(t, z,y) be the fundamental solution of the following heat equation with
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respect to the Riemannian volume /det(g;;)(z)dz,

9y =L1Anu
5t 75M
{ u(0,2) = f(a), (1)

where Ajpy is the Laplace-Beltrami operator for the Riemannian metric ¢ on M, i.e,
u(t,z) = /M p(t,z,y)f (y)/det(gi;) (y)dy

solves the above initial value problem. Watanabe (1987) introduced the notion of
the generalized Wiener functional and the pull-back of Schwartz distribution under
Wiener mappings in the framework of Malliavin calculus [see e.g. Malliavin (1978)).
By using these notions, he exploited the asymptotic expansion of the generalized
Wiener functionals in the Sobolev space generated by Ornstein-Uhlenbeck (OU)
operator and obtained the explicit expansion formula of the heat kernel.

In this paper we give the asymptotic expansion of the mean distance by using
the expansion of of the fundamental solution of heat equation p(¢, z,y). We will use
the summation convention, that is, we will omit the summation sign over repeated
indics.

2 Preliminaries

Let (W¢,P) be the d-dimensional Wiener space and H be the Cameron-Martin sub-
space of We. For a Hilbert space E, || - ||, denotes the LP(E)-norm of E-valued
Wiener functional. Let D be the Malliavin derivative and § the adjoint operator
of D which is a generalization of Ito integral and in this context is called Skorohod
integral. Then £ = § o D defines OU operator on (W¢,P). For 1 < p < oo and
s € R, we define a norm | - {lp,s by |Fllps = (I = £)*/2F||,. The Banach space
D, s(E) is the completion of the totality P(E) of E-valued polynomials defined on
(W¢ P) by the norm || - ||p,s. Then we have

Dy 5 (E) < Dps(E) for s<s' and 1<p<p’ < oo,
where — denotes the continuous inclusion. Also we have
D), ;(E) =Dy —s(E), for s€R and p € (1,00),
where (1/p) + (1/q) = 1. Let us set

Doo(E)= () [)Dps(B)

1<p<oo s>0
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Then the space of generalized Wiener functional may be defined by

Dowo(B)= |J |JDp-s(B)

1<p<oo s>0

and
Doow(B)= () JDp-s(E).

1<p<o0 >0

Let F(e,w) € Dy (R%), 0 < € < 1, and also fo(w), f1(w), - € Do (R?). We
say that the Wiener functional F(e, w) has the asymptotic expansion

Fle,w) ~ fo(w) + efi(w) +--- in Dy(RY) as €0, (2.1)
if for every p € (},00), s >0 and n=1,2,---,
F(e,w) —[fo(w) +efi(w)+- - +€ fn_1(w)] = O(e") in D, 4(RY) as €1 0. (2.2)

We say that the family, {F(e,w) € Dy (R?) : € € (0,1]}, is said to be uniformly
nondegenerate if for every € € (0,1], F(e,w) is nondegenerate and furthermore

limsup ||[deto(e, w)] " |, < 0o for all p € (1,00), (2.3)
€—0

where o (e, w) is the Malliavin covariance of F (e, w). The following Theorem is given
by Watanabe (1987).

Theorem 1 Let F(e,w) € Dy (R%), 0 < € < 1, be uniformly nondegenerate and has
the asymptotic expansion (2.1). Then, for every T € S'(R%), T(F(e,w)) € D_co has
the asymptotic expansion in D_oo:

T(F(e,w)) ~ Po(w) + eby(w) +-++ in D_x(RY) as €} 0, (2.4)

and ®o(w), ®1(w),--- € D_oo (R?) are given by the formal Taylor expansion at fq

T(o+lehi+ ot ) = oD T(olei+éfo+ 1 (29)

= Bo(w) +ediw) + -, (2.6)

where & = (a1, -, aq) is a multi-indez, of = IL !, a® =1L ;0" for a € R? and

. P oy P ag
b —(w) (ﬁ) :
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In particular,

T(fo(w)) fi(w),

Bo(w) = T(fow)), 1) = o

Do) = A T(ow ) + g oy o T o)) Fiw) fw),

Dy(w) = Tl fi(w) + oo 2T fofa)) f ) ),

+a%%a%ﬂfo<w>)ff ()] (w) fE(w), -~ @.7)

Here DT is the distributional partial derivative.

3 Asymptotic expansion of Wiener functional and
Main Result

Now we derive the asymptotic expansion of p(¢, z,y),  # vy, in powers of small time
t. By a localization result [see e.g. Watanabe (1987)], we can reduce our problems
to that of sde on RZ. We take a normal coordinate system at p € M and extend this
coordinate to the global Euclidean coordinate of R. Hence in order to obtain the
asymptotic expansion of p(¢, z,y) in small time, it is enough to consider the solution
the sde on R? over an d-dimensional Wiener space (W4,P). This p(¢,0,) can be
obtained by a generalized Wiener functional expectation

p(€%,0,z) = E[d; (X*(1,0,w))],

where X¢(t,0,w) is the solution of the following sde

Xek(1) =€) o ))dwi + €2 [ ok (X¢(t))dt
{Xé()—o. " B .

By Cartan’s formula, we have the following expansions:

Lemma 1 For small x we have the ezpansion:
of(z) = & + éRaibkﬂca-’Eb + I%VaRbick:Eaxbxc + O(l|lz||*).
af(z) = "%Pakma + 21—4(Vkpab — 6Vappr)z®z” + O(||z%).

Here the values of monomials in components of the curvature and its derivatives are
taken at the origin.
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Using Lemma 1, we have the expansion of X¢(1,0, w).

Lemma 2 For eache, 0 < e <1, X¢(1,0,w) € Do (R?) has the asymptotic expan-
sion

X€(1,0,w) ~ folw) + efi(w) + € fa(w) +--- in Doo(R%) as €0
and fn(w) € D (R%), n=0,1,---, are given as follows: for k=1,---d,
fEw) =0, fiw)=v*(1), fiw)=0,

1

1 . 1 1
Fw) = SRon / W (0 (£)chuf — 5 pa / w®(£)dt, -
0 0

Let F(e,w) = X¢(1,0,w)/e. Then it is obvious that F(e,w) is uniformly nonde-
generate. Let F,(P) be probability law of F. Then F,(P) has the smooth density
p(€2,0,z) and can be given by

p(€2,0,z) = E[d5 (X(1,0,w))] = € El6, /¢ (F (e, w))]

as generalized expectation of 0 /¢(F (e, w)). Let y = z/e. By Theorem 1 and Lemma
2, 6y(F(e,w)) has an asymptotic expansion:

6y(F(e,w)) = d&y(w(l) + [62f3(w) + € fa(w) + € fs(w) + -]
6

= §y(w(1)) + oz 750y( 1))[€* f3(w) + € fi(w) + €* fi(w) + -]
; aiz ai] y(w(D)[€* fi(w) + € fi(w) + € f5(w) + -]

x[leg(w)+63fZ(w)—+—e4fg(w)+---]+--- in D™® as € {32)

From (3.2), E[§, (F(e,w))] has the asymptotic expansion. From this we have that
asel 0,

p(,0,9) = Ed1)] + EEpL g 6
In order to compute generalized expectations in (3.3), we note that for g € Deo (RY)
Bls, (w(1)g(w)] = (~1)°1D Blo(wlw(t) =312 expl= 2 ymups (30

where Dy is the differentation with respect to y. It follows from (3.4) that we have

L

BlS, ()] = (@n) 2 expl-g ]
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% 1 1 a b ik

[a % z/e( w(l ))fs( )] = ('1'2'7'+ 18¢ 4Razbk-73 T — 1212.0ak-77 Tk)

2
x (2m) =42 exp[—';—|2].
€

Now we compute the expansion of mean distance of Brownian motion on M. Write
zt =r¢t for i =1,2,---,d where £ € S, First note that

Row [, €065 =0 and py [ €605 = Jou,
§d-1 §d-1 d

where wy_1 is the area of the sphere S¢~1. Using the spherical coordinates, we have

E[d?(0, X(1,0,w))]

2
ket T igj
/ /Sd . (1+e€ [**7' + z_1kl£ £]§ £ — 12€2pi_7'§ 51] +e00)
x (2me?) =42 exp[——] =1drds?-1

= de? - éT(p)€4 + o(€9).
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