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Abstract

Likelihood estimation in random-effect models is often complicated because the
marginal likelihood involves an analytically intractable integral. Numerical
integration such as Gauss-Hermite quadrature is an option, but is generally not
recommended when the dimensionality of the integral is high. An alternative is the
use of hierarchical likelihood, which avoids such burdensome numerical integration.
These two approaches for fitting binary data are compared and the advantages of
using the hierarchical likelihood are discussed. Random-effect models for binary
outcomes and for bivariate binary-continuous outcomes are considered.
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1. Introduction

Correlated data are frequently observed in practice, for example in longitudinal studies,
clinical trials and familial studies. Generalized linear models with random effects have
become increasingly popular for the analysis of such correlated data, for example the
hierarchical generalized linear models (HGLMs) of Lee and Nelder (1996, 2001a). In making
inferences from HGLMs, a marginal-likelihood analysis is often burdened by intractable
integration. To avoid this, various approximate and Bayesian inferential procedures have
been proposed. The approximations include the Gauss-Hermit quadrature (GHQ) (Hinde,
1982; Crouch and Spiegelman, 1990; Longford, 1994), and EM methods. Because the EM
method has often difficulty in implementing the expectation step, Monte Carlo EM (MCEM)
methods have been proposed (McCulloch, 1997; Booth and Hobert, 1999). The Bayesian
procedures include EM-type algorithms (Stiratelli, Laird and Ware, 1984) and the Gibbs
sampler (Zeger and Karim, 1991). However, all these methods involve intensive computation.
In this paper we implement the h-likelihood based Laplace approximation for fixed effects,
and compare it with the GHQ method for binary outcomes and for bivariate binary and
continuous outcomes. Gueorguieva (2001) compared the MCEM and GHQ methods and
recommended the GHQ when the number of random components is less than three,
otherwise the MCEM algorithm, even though computationally intensive, may be the only
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feasible choice. Neither time-consuming numerical integrations such ‘as GHQ nor Monte
Carlo methods to implement the expectation step are necessary to produce good estimates.

2. HGLMs

The specification of HGLMs is done in two stage: (i) Conditional on the random effects
v, the data y are assumed to follow a distribution from a GLM family. (ii) Assumptions

about the djstﬁbution of the random effects v complete the specification.
2.1 Hierarchical-likelihood method

For inferences on HGLMs, Lee and Nelder (1996) proposed to use a h-(log-)likelihood of
the form
h = log (f(ylv;8)) + log (f(v; 0)),

where f(y|v;8) and f(v; o) denote the conditional density function of y given v and the
density function of v, respectively. Throughout the paper likelihood is used to mean log-
likelihood unless otherwise stated. In forming the h-likelihood the choice of the scale of
random effects is important. Note that v is the scale on which the random effects are
assumed to occur linearly in the linear predictor. In this paper we focus on the estimation

of the unknown parameters 8 and o.
The marginal likelihood L can be obtained via the integration,

L =log f exp (h)dv.

Analytical forms of L are available only in a few special cases, for example mixed linear
models with a normal distribution.
Let 1 be a likelihood (either a marginal likelihood L or an h-likelihood h) with nuisance

effects . Lee and Nelder (2001a) considered a function p ,(1), defined by
p o(1)=[1- 4 logdet( 5 D1, &)/ D] 4o 5~ .

where D(1, @) = —3?%1/0a? and @ solves 91/da=0. For fixed effects 8 the use of p (L)

is equivalent to conditioning on /B (Cox and Reid, 1987), while for random effects v the

use of p,(h) is equivalent to integrating them out by using the Laplace approximation.

Ideally we may use the h-likelihood h for inferences about v, the marginal likelihood L for
B and the restricted likelihood p (L) for ¢ if L is easily available. However, when L is

hard to obtain, as respectively approximations to L and p s(L), we may use
p.(h)=[h—} logdet(F D (b, V)/D o,

where D(h,v)=—03%h/ov? and v solves éh/dv=0 and
p o(h) = [h— =+ logdet(} D(h, &)/ 5. 5~ .

where 8= (v, 8), D(h,8)=—0/356% and & solves dp,(h)/36=0; Lee and Nelder

_80_



Sungcheol Yun, Youngjo Lee, I-Do Ha, Weechang Kang

(2001a) showed that ps(h) is approximately p z(p,(h)) and provides numerically

reasonable dispersion estimators for HGLMs.
Lee and Nelder (1996) observed that deviance differences constructed from h and p ,(h)

are often very similar, so they (1996, 2001a) used h for estimating 8 and observed that the
resulting estimators generally work very well; see the simulation studies of Poisson and
binomial HGLMs (Lee and Nelder, 2001a), frailty models (Ha, Lee and Song, 2001) and
mixed linear models with censoring (Ha, Lee and Song, 2002). We call the resulting
estimators the maximum h-likelihood estimators (MHLEs). However, they observed that the
MHLEs can have non-negligible biases for some binary data. In this paper we implement
the fitting algorithm of 8 using p ,(h) and compare the resulting estimators with other

estimators.
2.2 The marginal-likelihood method

The marginal likelihood L often has no explicit form. A commonly used method to
approximate L would be GHQ. It replaces the integral in (2) by a finite weighted sum.
When the dimension (the number of random components) of the integrals is small, it can be
used to approximate the likelihood closely (Crouch and Spiegelman, 1990). However, the
error induced by replacing the integral with finite sum becomes more and more difficult to
control and exponentially time consuming as the dimension increases. The MCEM method
for finding the marginal-likelihood estimate provides an alternative to the GHQ method
(Gueorguieva, 2001). These iterative methods can handle high-dimensional integrals better
than the GHQ method. However, they require fairly sophisticated computer programs and
are very computationally intensive. Compared with methods using marginal likelihood those
using h-likelihood are analytically straightforward and computationally easy.

3. Simulation Studies

Numerical studies, based upon 200 replication of simulated data, are presented to evaluate
the performance of the proposed estimation procedures. For each parameter combination of
the simulated data we compute the bias and mean square error (MSE). We compare three

estimators, MHLE, an estimator maximizing adjust profile likelihood p,(h), and an

estimator maximizing the marginal likelihood L via an adaptive GHQ approximation. For the
adaptive GHQ method we use the procedure NLMIXED of SAS (Wolfinger, 1999) with 20

quadrature points. The resulting estimators are denoted by MHLE, p,(h) and GHQ,
respectively. For methods using h-likelihood, MHLE or p,(h) for estimating the fixed

effects, we maximize p s(h) to obtain the estimates of dispersion parameters.

4. Example

Price et al. (1985) presented data from a study on the developmental toxicity, ethylene
glycol (EG), in mice. The rates of fetal malformation increase with dose, ranging from 0.3%
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in the control group to 57% in the highest dose (3g/kg/day) group. Fetal weight decreases
with increasing dose, with the average weight ranging from 0.972g in the control group to
0.704g in the highest dose group. Gueorguieva (2001) introduced a joint HGLM for the
analysis of the EG data. He used the GHQ and MCEM methods. All the covariates (Dose
and Dose®) of this study are between-subject covariates. Gueorguieva (2001) neglected the
quadratic trend of dose in the HGLM for binary outcomes because of its insignificance. He
considered the quadratic trend only for the HGLM for continuous outcomes. However, we
found that it is necessary for both HGLMs i.e. the quadratic trend becomes significant if it
appears in both HGLMs.

We present the results from the p ,(h) and the GHQ method. These data have 1=94 with

varying cluster sizes whose average j=10.9. The SAS NLMIXED procedure for the GHQ
takes more than 20 minutes on a PC with Pentium 3 processor and 128 megabytes of
RAM, while our p,(h) procedure takes less than 5 minutes. The implementation of the
method in Lee and Nelder (2001a) uses the Aitken (1926) extrapolation procedure, which
greatly reduces the number of iterations. We do not use the Aitken procedure here in order

to have a fair comparison, but time for the p ,(h) procedure could be further reduced by its

use.
5. Concluding Remarks

Up to now many researches have been devoted to implementing methods based upon
marginal-likelihood. However, fitting models using methods such as GHQ and MCEM is
often computationally very intensive. This computational burden becomes heavier as the
number of random components increases. For example, the GHQ method in SAS NLMIXED
procedure is best suited for models with a single random effect, which currently does not
generally handle nested or crossed random effects (Wolfinger, 1999). This difficulty limits
the wide application of these methods. By applying the h-likelihood, one can avoid such
troublesome integration because there is an explicit analytical form for the likelihood. The
h-likelihood, we believe, is a natural extension of the Fisher likelihood to models with
random parameters. It provides a simple unified framework for random-effect models that
offers a numerically and statistically efficient fitting algorithm (Lee and Nelder, 2001a). It
also provides new solutions for various problems. For example, it can be applied to predict
future observations (Pawitan, 2001, Chapter 16), to generate a new sandwich variance
estimator (Lee, 2002), to analyze survival data (Ha, Lee and Song, 2001; Ha, Lee and Song,
2002) and to carry out meta analysis (Lee and Nelder, 2002); it offers unified simple
inferential tools for HGLMs (Lee and Nelder, 1996, 2001a), extendable to the analysis of
temporally and spatially correlated data (Lee and Nelder, 2001b). One major objection has
been the occurrence of large biases in parameter estimators for binary data. In this paper,
we see that a modification, such as the use of the Laplace approximation, gets rid of most
of the biases. H-likelihood will be the basis of an important method for the analysis of
random-effect models for correlated data. The latest GenStat release (Payne et al., 2002)
has an implementation of the MHLE estimators for arbitrarily numbers of random
components.
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