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Abstract

In this paper we develop a method for finding optimal ordering of K statis-
tical models. This is based on a dependent paired comparison experimental ar-
rangement whose results can naturally be represented by a completely oriented
graph (also so called tournament graph). Introducing preference probabilities,
strong transitivity conditions, and an optimal criterion to the graph, we show
that a Hamiltonian path obtained from row sum ranking is the optimal ordering.
Necessary theories involved in the method and computation are provided. As
an application of the method, gencralized variances of K multivariate normal

populations are compared by a Baycsian approach.

Key Words : Oriented Graph; Hamiltonian path; paired comparison ranking;

strong stochastic transitivity; generalized variances.

1 Introduction

The testing of a set of items for preference on overall suitability or on specific char-
acteristics often requires of the respondent the ability to make very fine sensory
discriminations based on complex physiological processes. To remove some of the
confusion associated with simultaneously comparing several objects, the method
of paired comparisons has been widely employed (See Bauer 1997 and references
therein). In paired comparison experimentation, expression of preference are ob-
tained for all possible pairs of objects in the set of interest. The data from experi-
ments are used, among other things, to rank the objects in order of preference.
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The present paper undertakes a graphical approach to the analysis of data arising
from paired comparison rankings. A graphical model is considered : A completely
oriented graph (Skiena 1990, p. 175), i.e., a graph which every pair of nodes is
connected by a single uniquely directed edge. The objectives are (i) to introduce
preference probabilities of the model constructed by a dependent paired compar-
isons, and (ii) to provide a criterion for ranking of the objects in the set of interest.
As an application, this paper focuses on considering how inferences might be made
about a possible ordering in the generalized variance of K multivariate normal popu-
lations, II; ~ Np(61,%1), ...,k ~ Np(0k,Ek). To this end we pursued a Bayesian
approach to calculate the preference probabilities under dependent paired compar-

isons.

2 The Graphical Model

2.1 Paired Comparison Ranking

Consider a finite oriented graphs where ith vertex represents population (or statis-
tical model) II;, i« = 1,..., K. Then the graph G(X,R) consists of a set X say
X = {1,2,...,K}, of vertices and a collection of arcs R where arc is of form
2 — y with z and y in X. A rank order of the K populations is an arrangement
(p1,p2, .- -,pK) = P of objects X. For a given preference graph G and an order P, let
v(P) denote the number of violations of the observed preference, that is the number
of arcs p; — pj in R such that p; precedes p; in P.

Under the finite oriented graph, one can formulate probability model for de-
pendent paired comparisons. Suppose that K objects are to be tested in pairs
with data being obtained to the pair (i, ;). Let © = {65} (4,5 = 1,..., K), where
0;; = Pr(p; — p;) is the probability of preference for object ¢ over j, 8i; + 65 = 1,
and for convenience #;; = 1/2. Then a problem arises in defining a ranking of objects
based on ©. This problem can be resolved by requiring © to satisfy a transitivity
constraint. For a dependent paired comparisons following two conditions are satis-
fied:

weak stochastic transitivity (C1) : for every triad of objects (1, j, k),

0;; > 1/2 and 6; >1/2 imply 6 > 1/2; (1)

strong stochastic transitivity (C2) : for every triad of objects (4,4, k),

0;; >1/2 and 6 > 1/2 imply 6y > max(6y5,0;%). (2)
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An equivalent form of condition Cj is the following: for each pair (3, 7),
Gij21/2 implies 0;, > 0% k=1,..., K. (3)

Condition (2) follows directly from (3), while an examination of cases establishes
that (3) follows from (2).

The stronger condition C, is not necessary warranted in all situation (David,
1987). Conditions C) and Cy each lead to a well defined ranking of every triad and
hence to a true ranking of the set of K objects.

The so-called preference matrix representation of the graph is useful for deter-
mining v(P) under the conditions of Cj or Cy. For given P, the preference matrix
contains a plus in its 4, jth place if 6;; > 1/2 (i.e. if p; — p;) a minus if §;; > 1/2 (i.e.
if p; — p;) and a dot if 8;; = 1/2. Suppose, under Cy, the preference probabilities
(6;5's) yield the matrix for an ordering P = (1,2,...,6) :

+ + - + +

— . —_ + + —_—

-+ - 4+ + +

+ —_ — . — —
In this example there are five violations of the ranking (1,2,...,6) shown by the
minus signs above the main diagonal. That is v(1,2...,6) = 5; other rankings

yield other v’s. When a dependent paired comparisons is experimented an optimal

ranking P of K objects achieves
mgn v(P)=0

and we call any order P obtaining this minimum is an 'optimal adjoining ordering’.
The mathematical literature treats problem related to ours using the language
of round robin tournaments, see Harary, Norman, and Cartwright (1965). For most
tournaments it will be possible to order the players in a Hamiltonian path, i.e. so
that each defeats his successor. In fact it is a theorem that for a complete tournament
there will be at least one Hamiltonian path. Harary et al. see two serious difficulties
with the Hamiltonian ordering of the players. First, there is no necessary relation, in
general, between such a ranking of players and their scores. Secondly, a tournament
may have more than one Hamiltonian path, so that several different rankings may be
possible. The optimal adjoining ordering on the other hand is entirely consistent with
Hamiltonian ordering and in fact provides a means for solving the two difficulties.
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Theorem 1. For a complete tournament every optimal adjoining ordering is a
Hamiltonian path.

2.2 Computational Aspects

The practical matter of determining the optimal ordering is not easy. A direct
algorithm would be to enumerate all K! possible orders, score v in each, and find
the the ordering with zero score. Alternatively, one may obtain all the Hamiltonian
pathes from the graph model with K vertices, and then score v in each path to
find the optimal ordering (see, Adleman 1994; Fu, Beigel, and Zhou 2003 for the
algorithms for Hamiltonian path).

The optimal ordering becomes easy when we use the strong stochastic transitivity
condition C7 in ordering K objects. Suppose that K statistical models (or objects)
II4,...,IIx are compared in all possible K (K —1)/2 different pairings. The simplest
procedure is the Kendall-Wei method that rank according to the vector w of row-sum
scores (see David 1987),

w =01, (4)
where 1 is the column vector of K ones and © is the matrix {6;;} of probabilities of

preference.

3 An Application

The generalized variance can be used to rank distinct groups and populations in order
of their dispersion or spread (Rencher 2002). However, due to complex sampling
distribution involved in inferencing the generalized variance, the analysis of it is yet
to be seen in applied settings.

3.1 The Posterior Distribution

Suppose X1 (3), ..., Xn;, (i) are independent p-variate observations from Np (s, A7 b,

i=1,...,K, where A; = E[l, the precision matrix. Let
— Ni Ni — —
X(i) = Xe(i)/Niyand V; =) (Xe(i) — X(9))(Xe(s) — X (3))".
£=1 =1

To assure very little information is contributed to the analysis by a subjective prior

density, we assume diffuse prior

K
p(Nh—y i, NG AG) o H lAiI_(”+1)/2. )

i=1
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Integrating joint posterior density with respect p;’s, we have the marginal pos-
terior distribution of A; that is independent of Ag, k=1,..., K;i# k:

M| X @),V ~Wy(VLN; 1), Ni>p+1, (6)

a Wishart distribution with scale parameter Vi_1 and N; — 1 degrees of freedom,
i=1,...,K,.
Theorem 2. Let S; = V-1/2A~V~1/2 i =1,...,K, and let EkH = T;Ty,
E=1,...,K — 1 where Ty is an upper trzangular p X p matriz. Then Ry =
_1 (Zz 1 ) ! are independent with Ry ~ By (p; Zi:l n;/2,nk1/2), k=1,...,K—
1. For each k, the joint posterior distribution of eigen values, )\’f,...,/\’; of Ry,
p(X¥|Data) is

ckﬁ |:()\];>Ei'c=l(ni“‘l’—l)/2 (1 _ /\f)(nku—p—l)/?:I 1”_[ ()\ﬁ B )\ﬁ) IO, (1)
¢

ulv

where \¥ = (0, ... ) I(/\k) =I[{1>M>...> /\’; > 0), an indicator function,
=7 /2/[Fp{P/2}B (1 ni/2,n041/2)], and ng = N — 1.

3.2 Posterior Probability of |Z;| < |Z;]

The distribution (7) enables us to obtain various integral-type posterior quantities
of |5;|/|Z;]'s for 4,5 = 1,..., K51 # j. Especially the posterior probability of a set
{|Z:l/|Z;] € A} is obtained from (7) if we set 1{|%;|/|Z;| € A}, where 1{-} denotes
the indicator function. When we take A = {|%;|/|%;}; |:]/|Z;| < 1} in the indicator
function, (7) gives the posterior probability of |X;| < |E;|, i.e.,

0i; = p(I%i] < |Zj|Data)

x

YO MY TT p(A*|Data) OX --- 9XEL, 8
](,\K—l) /I(/\l)nz]( kl:—Il I a a ( )

where

IVlHu 1 (1= NI 1( 5:1/\5) <1
Vil (1= XD T (B ) [

An analytic evaluation of the probability is not available because the poste-

77:](/\ ) AK 1) 1{

rior distribution [[X7! p(\|Data) in (7) is complicate. Fortunately, however, the
weighted Monte Carlo method (cf. Chen and Shao 1999) whose variant is applicable
for the computation of the probability.
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3.3 A Weighted Monte Carlo Method

Suppose that {/\’(Ct), t=1,...,m;k=1,... K — 1} is a simulated sample from an ap-
propriate importance function g(A) = Hii‘l1 gr(MF). Write the importance sampling

weight as
K-1
wey = [ {p(\ylData)/g(Ny)} (9)
k=1
Then, the weighted Monte Carlo(MC) estimator of the posterior probability (9) is
given by
m
Z (t)nlj ’\(t K Y Zw(é), (10)

where 6;; = p(|Z;| < |Z;|| Data).

Notice that (10) gives a Monte Carlo estimate of the posterior probability using
iid samples from the importance distribution in such a way that & =1 p(/\leata)
and Hk=1 gr(\¥) need only be known up to a constant of proportionality. Geweke

(1989) showed that
éij 5 gij, ,j=1,..., K, (ll)

as m — oco. Further the law of large numbers implies that
m'2(6;; — 0;5) — N(0,0?),
where 02 = 0% /52 and it can be estimated by §2 = 6%/5? with § = 1/m 7%, wg
A K-1 7]

and 6% = 1/m Zt";l(w(t)n;‘j()\(lt), e >‘(t) ) — w(t)eij)?

As one would expect, (10) will converge faster and generally be better behaved
the closer the importance function is to the joint posterior distribution Hg 11 p(\*|Data).
For this reason, choosing a good candidate is the main issue in applications of the

importance sampling. Three choices of important distributions are considered.
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