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Abstract

A momentum threshold autoregressive (MTAR) model, a nonlinear autoregressive
model, is analyzed in a Bayesian framework. Parameter estimation in the presence
of missing data is done by using Markov chain Monte Carlo methods. We also pro-
pose simple Bayesian test procedures for asymmetry and unit roots. The proposed
method is applied to a set of Korea unemployment rate data and reveals evidence for
asymmetry and a unit root.
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1 Introduction

One important research area in modern time series analysis is the class of nonlinear models which
is useful for representing several important aspects of time series data. One of such nonlin-
ear aspect is dynamic asymmetry which states different dynamic properties depending on status
of the process. Such asymmetry is well represented by MTAR models for which Enders and
Granger(1998), Caner and Hansen(2001), and Shin and Lee(2001) considered classical regres-
sion approaches and Koop and Potter(1999) considered a Bayesian scheme. These MTAR models
consist of two different autoregressive regimes depending on whether the time series process is
increasing or decreasing at each time. The MTAR models prove to be useful in explaining asym-
metries and nonstationarities of many economic and finance time series such as unemployment
rates, interest rates, GNP, productions, etc. See the above mentioned works and references therein.

The methods developed by the above authors are based on complete data sets. However, it
is very common that time series data are not complete. There are many sources which induce
incomplete time series data such as missing, outlier removal, and change of sampling scheme. For
example, it is very common that a quarterly sampling scheme is enhanced to a monthly scheme so
that the initial quarterly data set contains unobserved data if the data set is regarded as a monthly
data set.

Now, it would be important to develop a statistical method for MTAR models which admit
incomplete data. We are specially interested in developing inference methods for the major issues
of tests for symmetry and tests for unit roots. There are two strategies for handling incomplete data
in linear ARMA time series models, that is, classical methods and Bayesian methods. Various
classical methods were proposed by Ansley and Kohn(1983), Dunsmuir and Robinson(1981),
Wincek and Reinsel(1986), Shin and Sarkar(1995), and many others. Some Bayesian methods
were considered by McCulloch and Tsay(1994). Compared to the classical methods, the Bayesian
methods have simpler distributional properties of test procedures. For analyzing MTAR models,
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the Bayesian methods seem to be more promising because the classical methods would no longer
retain computational simplicity due to nonlinearity.

In this article, we propose a Bayesian approach to parameter estimation in the MTAR model
with incomplete data by using MCMC. We recast tests of asymmetry and unit roots as Bayesian
model selection problems and propose a simple and efficient method to compute Bayes factors by
using the outputs from MCMC. The proposed method is applied to a set of Korea unemployment
rate. The study reveals dynamic asymmetry and a unit root of the data generating process.

The remainder of the paper is organized as follows. The model and prior specifications are
described in Section 2. A Bayesian estimation scheme and tests of hypotheses for asymmetry and
unit roots are developed in Section 3. A practical example is illustrated in Section 4.

2 Model and Prior Specification

We consider an MTAR model defined as

g = { p1{ye—1—pat) + a11dys—1 + -+ opAyp—p +ar if Iy = 1
p2(yYi—1—p2t) + a1 Ayi—1 + -+ agpAyr—p + ar if [; = 0,

where Ay = y; — yi—1, It = I[Ay:—1 > 0] is the indicator function for the event Ay, > 0,
(p1, p2, 01, 2, 41, 2, 02) are unknown model parameters, o; = (a1, -+, 4p)’y 4 = 1,2, a¢ is
the sequence of independent normal errors having zero mean and variance o2, and j;; is a mean
function. Observations y; are made for the time span ¢t = 1,2,...,T. Let M be a subset of
{1,2,...,T} on which y; is unobserved so that the observed data set is {y¢,t = 1,...,T,t € M}.
In case of missing data, we assume missing completely at random (MCAR) or missing at random
(MAR) in the sense of Rubin(1976) for the missing mechanism. We develop methods assuming
simple means u;; = u;. However, given the methods, an extension to the trend model with
wit = Bio + Birt would be straightforward.

Let n; = —pi;,1 = 1,2. For implementing a Bayesian method, we use independent conju-
gate priors for all unknown model parameters so that (o1, p2, a1, a2, 71, 72, o?) are independently
distributed as

pir~ N(pio,ozi), Qg ~ Np(a?72ai)v i~ N(W?’Ug »i=12, o~ I1G(v,9) (1)

for some hyperparameters p?, 02, a2, o, 7, 02,,7,8, where N, Np, and IG denote normal, p-
dimensional normal, and inverse gamma distributions, respectively.

We adopt the empirical Bayes approach for the hyperparameters so that they are determined
from the data. A simple initial value can be obtained from the symmetric model, i.e., the AR
model. We set 1§ = uJ = g, where § is the sample mean of y;. We set (p%,a9) = (p3, a9) to the
estimators of {p1,a1) = (p2, ) in the OLSfitting to the AR model, i.e., in the regression Ay,
on (ys—q — ¥), AYt—1, ..., Ays—p for all ¢ such that all terms Aye, yi—1, Ayz—1,..., AY—p are
available. The variance parameters agi, 3, are set to those obtained from the estimated variances
of the OLSE p?, a? multiplied by a positive constant 7. If we want vague priors, we choose 7
greater than one. Let 0%2 be the error variance estimator. We let v = 3/2,8 = 0°2/2 so that the
prior mean of o2 is ¢¥2. We finally let nd) = —p2u0. In order to initiate the Gibbs sampler, we
need to specify initial values of the unobserved values y;,t € M, for which we use the simple
average of two adjacent available observations.
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3 A Bayesian Method

We first describe the full conditional distribution of each of the unknown parameters as well as the
unobserved values. We later provide a complete implementation of a Gibbs sampler(Gelfand and
Smith,1990) for parameter estimation, and posterior probabilities of hypotheses for asymmetry
and unit roots.

Let Z;y = Ays — X1ty — Xoglog where Iy = Iy, Iy = 1 — Iy, and Xy = pi(ye—1 — i) +
il AY—1 + -+ QipQAyi—p, i =1,2. LetY = (y1,...,yr) and 6 = (p1, p2, a1, a2, M1, 12, 02)'.
Let o be the first ¢ such that both Ay;_1 and Ay,_,, are available. The joint density of # and Y is
proportional to [T12_,7(p:)m(cu)w(mi)]m(02)ezp(— iy, Z2/(20%)) where w(p;), m(cs), 7 (mi),
and 7(c?) are the prior delsmtles defined in (1).

Note that, as a function of p;, Zt 1 7} = Zz;to(p?yf_llit — 2piyi—1€p, Iit) + constant,
where ep;, = Ay, — (7 + Z: 1 aUAyt_J) Hence, investigating the joint density of # and Y as
a function of p;, we find that the full conditional distribution of p; given all the other elements of
fandY is

(p: | all others) N{(prp;, 7,pl)
T

1 1 \—
where pirp, = 02,,(3% LT 1o Yi—1€ps Lit + —3—) 02, = (37 Dpmgo Vi Lt + ;g-) L Asa

function of «;, Zthto AR al(zz;to Y,Y/ 1t)az 2a Zt:to Yieq,, Iit + constant where
Y: = (Ayi-1, s Ayt-p)’, oy = Ayt — (piye—1 + ;). Therefore, the full conditional distribution
of ¢v; is given by

(a; | all others) ~ Np(tra;, SBra;)s
where piyq, = Em,{-*.r Z:{ to Yiea,, Lit +2—1 0}’ Yoy = {;17 Z?:to Y,Y/ I +2;i1}—1_ Also,
as a function of 7;, Y= o & =T —to (21 — 2nseq, Iit) + constant, where e, = Ay —
(piye—1 + 3 F 1 cijDye-j), hence we have

(n; | all others) N(prn, 0 )
where pin,, = mh —g' Zt to en Lt + —Q—) 7rm = -, Zt 1 dit + ;%7)‘1. Finally, the full

conditional distribution of o2 is spemﬁed by
(02 | all others) ~ IG(3(T—to+1)+v, 1 > 1 to ZZ 4 9).
In order to characterize the full conditional distribution of y;, t € M, we investigate }:
as a function of y;. Some algebra yields that, as a function of y,
Yoo 22 =Y {1+ (L + i+ i)+ h (s —aip1)? + o . Yy L
- 2{giot + (1 + pi + 0i1)gi1e + D _polik — i g 1)gzm — QipGipt+1,t Yy Lit]
+constant, (2)
where gior = (1+p)Ye-1 + M + Dpey GikAYi—ky Gitt = Y1 — {hi + Dy CikDYrs1-k —
any}, Gike = Yerk — {(1+0i)Verk—1 + M + D5 ) @AYy — (k= ik-1)ueh, b =
2,0y Gipr1,t = Yerprl — {(1+P)Ytap + 1 + 2 k1 @ik DYpa—k + cipy; }. Note that, owning
to the term I, (2) cannot be given in a form a(y; — b)2 + constant for a, b free from ¢. Therefore,
the full conditional density of y; is not given in a simple known density form. Hence, we use a
Metropolis-Hastings algorithm(Hastings,1970) for sample generation of 4;. For each t € M, we
generate a y; from the full conditional distribution of y; given all others according to the following
steps:
Step 1. Start with an initial value of y;.
Step 2. Generate y; from a density function 7(-).

Step 3. Replace y; by y; with probability min [%, 1} , where f() is the full

Z2

s=ig
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conditional density of 3, given all others.
Step 4. Repeat Step 2 - Step 3 until convergence.

Note that f(y;) o« exp(— Zs —to Z2/(20?)). Therefore, f(y;)/f(y:) can be easily computed
from (2) because the multiplicative constant for f(-) needs not be specified.

Even though r(-) in Step 2 can be any density function, it should be convenient for simple
random generation of yf and should be close to the real conditional density of y; for efficiency
of the algorithm. A good compromise between simplicity and efficiency would be the posterior
density of y; under the assumption of no threshold effect, i.e., under p; = p2 = p, say, ay =
oo = Y, say, k = 1,...,p, under which r(-) is a simple normal density. Investigating (2)
under this symmetry condition renders us to choose r(-) as the density of NV (/tmn, a2,.), where
fam = me[ )~ H{goe+(14+p+h1) g1t+Z o (Uk=0k—1) gkt =Vpgp+11}], 02, = (@) H(1+
(I+p+1)* + Z S (or—tr—1)? + 92} and gkt is the common g5y = 92kz " under symmetry.

Now the Gibbs sampler generates a sequence of random sample of each component of  and
Ys, t € M, according to the full conditional distributions and the Metropolis-Hastings algorithm
stated above. The Gibbs sampler first performs temporary burn-in iterations until the generated
samples achieve stationarity. Later it is iterated NV x x times, where /V and « are positive integers.
In order to obtain independence of the generated Gibbs samples, every x-th, £ > 1, sample is
taken to produce Gibbs samples 9@ and ytg, £ =1,2,...,N which form a basis for our Bayesian
analysis. The Bayesian estimate of 8 is g =N~ Ze 1 U¢ and the Bayesian predlctlon of the
unobserved value y; is §jy = N— Ze 1 Yo, t € M. Bayesian standard errors of 6 and § ¢ are the
standard deviations of the Gibbs samples {0, = 1,..., N} and {yw, ¢ = 1, ..., N'}, respectively.

Moreover, posterior probabilities of some imponant hypotheses can be computed from the
outputs of MCMC as described in more detail below.

The hypotheses related with asymmetry are Hy : p; # pa, 1 # a9, Hy @ p1 = p2, 00 #
a9, Hy : p1 # pa, 000 = g, H3 @ p1 = pa, a1 = . According to Oh(1999), we can compute the
posterior probability of each hypothesis in the following way.

P(H()]Y) 1 + Zz lpi) 1, P(H,IY) = P(HQIY)pi ,1=1,2,3,
where p; = W(pl—pzly)/ﬂ(m:pz), p2 = m(ar=azlY)/m(e1=a2), p3 = m(p1=p3, 1=
as|Y)/m(p1=p2, c1=az). Values of the posterior densities are computed from the full conditional
densities as

(o1 = palY) = & oLy 78 (p2e), w(on = oY) = § 0L, 76, (@20),

m(p1 = p2, 01 = aalY) = & 3001 w6 (p20)mé, (anelpr = p2e),
where 74 (p2¢) is the value of the full conditional density of p; evaluated at the £—th MCMC
sample 8¢ = (p1¢, P2e, 12, 20, M1es 22, 05)' With pyp replaced by pog, 7 fn (Oth) is the value of the
full conditional density of ov; evaluated at 8, with a1, replaced by arge, and 7é, (a2l p1 = pog) is
the value of the full conditional density of a1 evaluated at §, with (p1¢, @1¢) replaced by (pae, aag).
Values of the prior densities w(p1 = p2), m(@1 = ag),m(p1 = p2, 1 = ag) are computed in the
same way as those for the posterior densities if the posterior means and variances are replaced by
the corresponding prior means and variances.

For the unit root hypotheses Hj:p1 #0,p2#0,H{ : pr = 0,02 #0,Hy : p1 # 0,09 =
0,H : p1 = 0,p2 = 0, the posteror probabilities P(H}|Y), P(H{|Y), P(H,|Y), P(H3]Y)
are computed in the same way as those P(Hy|Y), P(H,|Y'), P(H2|Y'), P(H3|Y) stated above if
densities related with (p; = p2), (a1 = a2),(p1 = p2, 1 = a2) are replaced by those related
with (p1 = 0),(p2 = 0), (01 = 0, p2 = 0), respectively. For example, m(p1 = p2|Y’) is replaced
by m(p1 = 0Y) = 5 2py 75, (0).
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Table 1: Information Criteria

Dataset p 0 1 2 3 4 5 6 7 8
Full = | AIC | -1280.3 -12863 -1263.8 -1282.3 -1267.2 -12823 -12779 -12784 -12724
BIC | -12724 -1270.5 -12402 -1250.8 -12279 -12351 -12229 -1215.6 -1201.8
Quarterly [ AIC | -2523 -263.9 -257.7 -254.7 -261.0 -261.4 -254.8 -248.3 -257.0
BIC | -246.6  -252.6  -240.8 -2322  -232.9 -227.8 -2157 -2039  -207.

4 An Example

We apply the proposed Bayesian method for analyzing a series of seasonally adjusted Korea un-
employment rate for the period of Jan. 1966 to Oct. 1997 depicted in Figure 1. Until Jun. 1982,
observations are obtained quarterly and, from that time on, observations are made monthly. If the
series is regarded as a monthly data set, unobserved values are present for the period of Jan. 1966
-Jun. 1982. The ratio of the total number of unobserved points relative to the total number of
observations is 132/382=0.35. For comparative purposes, we also analyze the quarterly data set
for the whole period of 1966 - 1997.

Table 2: Bayesian estimates and their standard Figure 1: Korea Unemployment Rate

erTors :
Parameter Full Quarterly : "
Pl -0.009(0.005) -0.077(0.017) s
P2 -0.022(0.005)  -0.083(0.016) ‘ SNy
an -0.102(0.048)  -0.168(0.075) )
o1 -0.109(0.048) -0.261(0.073) 2
o° 0.033(0.003)  0.114(0.015) !
m 0.054(0.015) _ 0.251(0.064) e wm e s e e
m 0.047(0.014)  0.244(0.083)

The autoregressive order p of the MATR model is chosen by investigating the AIC and the BIC
defined by AIC=nlog(62)+4(p+1) and BIC=nlog(62)+2(p+1)log(n), where 52 is the Bayesian
estimate obtained by the method in Section 3 and n is the effective number of observations. For
the quarterly data set, n = 127 — 2 = 125 and for the monthly data set n = 382 — 2 = 380.
Table 1 presents values of the AIC and the BIC for p = 0, ...,8. For the full data set, we select
p = 1 because the AIC takes minimum value and the BIC takes nearly minimum value at p = 1.
For the quarterly data set, we choose also p = 1 because both the AIC and the BIC take minimum
valuesatp = 1.

The parameters are estimated from a set of MCMC samples obtained from N x & = 30, 000 x
3 = 90,000 iterations after 5,000 iterations of bum-in. The normal and inverse gamma random
variables are generated by FORTRAN subroutines RNNOR and RNGAM from IMSL(1989).

Figure 2 shows sample path of generated parameter samples {6z, ¢ = 1, ..., N}, which indicate
convergence has been achieved. Parameter estimates are given in Table 2, Looking into the stan-
dard errors in the parentheses, we see that those of parameter estimates obtained from the full data
set are substantially smaller than those from the quarterly data set. This implies that, compared to
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Figure 2: Time sequence plot of parameter estimates(full data)
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Table 3: Posterior probabilities of hypotheses of asymmetry and unit roots

Hypothesis Full  Quarterly | Hypothesis Full  Quarterly
Ho:pr#p2 & cn#az : 0350 0.233 Hy:pr #0 & pa #0 : 0382 0.993
Ho:pr=p2 &ar#az : 0133 0.305 H:pp=0& p2#0 : 0618 0.007
Hy:pr#Ep &oan=a : 0371 0.193 Hy:pp#0 & p2=0 : 0000 0.000
Hy:pr=ps & oy =02 : 0145 0.270 Hi:pp=0& p2=0 : 0.000 0.000

the quarterly data set, the extra data other than the quarterly data points in the full data set provide
us much more information, yielding much more precise parameter estimates.

The two data sets show somewhat different shapes in asymmetry features. For the full data set,
asymmetry is mainly represented in different values of (p1, p2) and (1, 2). On the other hand,
for the quarterly data set, asymmetry is mainly presented in different values of (11, a21). For the
full data set, estimates of (p1, p2) are more close to zero and more different from each other and
fi1 = 0.054/0.009 = 6.000 and i3 = 0.047/0.022 = 2.136 are more different from each other
than fi; = 3.260 and fi2 = 2.940 for the quarterly data set,.

These asymmetry features are investigated in more formal manner as hypothesis testing. The
hypothesis H3 : p1 = p2 & a1 = ag in Table 3 corresponds to the symmetric model and
the others corresponds to the asymmetric models. We see that the full data set gives a stronger
evidence for asymmetry in (p1, a11) and (p2, a21) because the posterior probability of symmetry
are 0.145 and 0.270 for the full data set and quarterly data set, respectively. The analysis with both
full and quarterly data sets reveal some evidences for asymmetry. However, those evidences come
from different hypotheses. For the full data set, the hypotheses Hg : p1'# p2 & a1 # ag and
Hy : p1 # p2 & a1 = a9 have probabilities 0.350 and 0.371 respectively, summing up to 0.721,
the posterior probability of p; # pa. On the other hands, for the quarterly data set, the hypotheses
Hy:pr#p2 & a1 # azand Hy : p1 = p2 & a1 # ag have probabilities 0.233 and 0.305
respectively, summing up to 0.538, the posterior probability of a1 # aa;.

We next investigate results for unit roots hypotheses. According to Table 3, when we use the
full data set, the probability supporting the hypothesis of no unit roots is just 0.382. However,when
we use quarterly data, the posterior probability for [ is 0.993, much larger than 0.382. Therefore,
the full data set provides stronger evidence for unit roots than the quarterly data set. According to
the analysis of the full data set, the model with partial unit root, i.e. (p1 = 0, po # 0) is the most
probable one.
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