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Graphical Diagnostics for Logistic Regression

Hakbae Lee*

Abstract

In this paper we discuss graphical and diagnostic methods for logistic regression, in
which the response is the number of successes in a fixed number of trials.

Key Words: Logistic regression, Central subspaces, Regression graphics, Sliced average
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1 Introduction

Dimension-reduction without loss of information is a fundamental idca in statistics. Cook
and Lee(1999) discussed dimension reduction in binary response regression. In this paper we
use a graphical paradigm: Sliced Average Variance Estimation(Save)(Cook and Weisberg,
1991).

2 The Central Subspace

Let B denote a fixed p X ¢, ¢ < p, matrix so that
y Lx/BTx. (1)

This statement is cquivalent to saying that the distribution of y{x is the same as that of
y|BTx for all values of x in its marginal sample space. It implics that the p x 1 predictor
vector x can be replaced by the g x 1 predictor vector BTx without loss of regression
information, and thus represents a potentially uscful reduction in the dimension of the
predictor vector. If (1) holds then it also holds when B is replaced with any matrix whose
columns form a basis for §(B). Thus, (1) is appropriately viewed as a statement about
S(B), which is called a dimension-reduction subspace for the regression of y on x (Li 1991,
Cook 1994a).

Let Syx denote the interscction of all dimension-reduction subspaces. In this article,
Sy|x is assumed to be a dimension-reduction subspace and, following Cook (1994b, 1996,
1998a,b), is called the central subspace.

Binary responses cause no conceptual complications for the central subspace, but con-
struction and interpretation of summary plots in practicc must recognize the nature of the
response. Here we rely on binary response plots as developed by Cook (1996). For example,
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if it was inferred that dim(Sy)x) = 3 then the summary plot would be a three-dimensional
binary response plot with the coordinates of ﬁTm assigned to the axes of the plot, and the
points colored to indicate the states of y.

Let 3y = Var(x), which is assumed to be non-singular. Without loss of generality,
discussion in the rest of this article will mostly be in terms of the standardized predictor

z = 27Y%(x — E(x)).

The corresponding sample version Z is obtained by replacing £y and E(x) with their usual
moment estimates, ¥y and X. The columns of the matrix v = 2,1(/217 form a basis for Sy,
the central subspace for the regression of y on z. Thus, there is no loss of generality when
working on the z-scale because any basis v for Sy, can be back-transformed to a basis n
for Sy|x.

3 SAVE and Logistic Regression

For notational convenience let p; = E(zly = j), ¥; = Var(zly = j), s = 0,1, and f =
Pr(y =1). We assume 0 < f < 1. Finally, let v = g, — py and A = X — .

Lemma 1
Ssave = S(A,U) (2)

This lemma establishes two useful properties of SAVE. First, like the other procedures, it
gains information from (A, v), allowing use of the equivalent kernel matrix M = (A, v).
Second, it is the most comprehensive procedure without requiring the linearity or constant
covariance conditions. Those conditions are needed to connecct the various method-specific
subspaces to the central subspace, but arc not needed for Lemma 1.
Since the response is binary the distribution of y|z can be characterized by the conditional
probability of “success”, Pr(y = 1|z). Assuming that z|(y = j) has a density g;,
og Pr(y = 1|z) _ log 91(2) +log——.
Pr(y = 0lz) 90(z) 1-f
This means that Pr(y = 1]z) can be expressed via its logit in terms of the log density
ratio. Now assuming that z|(y = j) is normally distributed with mean p; and variance Zj,
7 =0,1, it is known that

2log %; = C+27(Z5" - Bz + 227 (57 1y — g o) (3)
o
where C is a constant not depending on z. It follows immediately from this characterizing

expression that
Syie = S(Zg! = Z71, B 1y = B o). (4)
Lemma 2 Assume that zly follows a non-singular normal distribution. Then Sy; = Ssave.
If the linearity and constant covariance conditions hold, but zjy is not normally dis-
tributed, we will still have Ssave C Syjx- However, there is no guarantee of equality because
moments higher than the second may be involved. With just the lincarity condition there

is the added complication that Sgave may “overcstimate” Sy becausc of the presence of
extraneous directions.
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4 Example: Diabetes Data

For this first example we consider a data set on 724 patients with complete records from the
National Institute of Diabetes and Digestive and Kidney Disease. Smith, Everhart, Dickson,
Knowler and Johannes (1988) use this data sct to forecast the onset of diabetes mellitus.
The binary response variable y equals 1 if a patient tested positive for diabetes and
equals 0 otherwise. An examination of the data on the 6 predictors indicated that power
transformations might be used to achieve approximately joint normality. Based on the
standardized predictors z;, the two SAVE predictors resulting from this analysis are

SAVE; = —0.1622z; +0.6212; +0.194 23 — 0.431 24 + 0.193 25 + 0.572 z¢
SAVE; = 0.099z; — 0.070 23 + 0.181 23 + 0.530 24 + 0.816 25 — 0.079 2.

The span of the two vectors of coefficients in these predictors is the estimate of Sgavz which,
because of the approximate normality of the transformed predictors, we expect is the same
as Sy|z-

Shown in Figure 1 is the 2D binary responsc plot (Cook 1996) bascd on SAVE; and
SAVE;. This plot shows clear separation between the states of y, and could be used to guide
the remaining analysis. Several options are available, depending on the precise goals of the
study. For example, we could fit a logistic model in the predictors SAVE; and SAVE;. Using
results by Kay and Little (1987), see from Figure 1 that a logistic model for the regression
of y on SAVE; and SAVE; will likely nced a lincar term in SAVE; and quadratic terms in
SAVE; and SAVE,. The linear term in SAVE; is needed because the two point clouds have
different locations along the SAVE; axis. Quadratic terms in SAVE; and SAVE; would be
needed because Figure 2 indicates that Var(SAvE;|y = 0) # Var(SAvE;|ly = 1) for = 0,1.
The different variances for SAVE; are a little difficult to see in the plot, but are quite apparent
when comparing marginal kernel density estimates (Figure 2). Figure 3 shows a plot of chi-
residuals versus —1.03 + 1.895AVE; — 0.29SAVE? + 0.13sAVES. The lowess smooth on Figure
3 is nearly constant, suggesting no cvidence against the fitted mean function.

Summary plots such as those in Figure 1 is often useful in the development of first models
for the regression. Let g;(x) denote the conditional density of x|(y = 7), 7 = 0,1, and assume
that go(x) is multivariate normal with mean gy and covariance matrix 3. Assume further
that g;(x) is a mixture of normal densitics,

g1(x) = agii(x) + (1 - a)g12(x)

where g1x is the multivariate normal density with mean g, and covariance matrix X,
k =1,2. After a little algebra, the regression odds ratio can be expressed as

Pr(y = 0}x) — oxp{(po — p1) =7 x}
Pr(y =1x)  wp+wyexp{(ptye — 1)}

where wg and w; are unknown constants not depending on x. It follows that dim(Syx) = 2
with

Syix = 2_15{0‘0 = H11), (B2 — p11)}
The two vectors defining this subspace can be estimated directly from the subsects of the
data corresponding the sub-populations.
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Figure 1. Two_dimensional Binary Response Plot of Direction 1 from SAVE versus
Direction 2 from SAVE. y=0 is marked with an open circle; y=1 with a star
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Figure 2. Histogram for two SAVE variables, with separate density estimates for
the two values of y.
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Figure 3. Chi-square residuals versus fitted value using SAVE variables. A lowess
smooth is shown on the plot.
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Finally, we can re-express the odds ratio as
Pr(y = 0|x)
Pr(y = 1|x)
which provides a first (nonlinear) logistic model for the regression. It seems unlikely that we

would have arrived at a model of this form without the guidance available from the summary
plot.

log = no1 + nT x — log(1 + exp(noz + 13 x))

5 Discussion

Approaching a regression through its central subspace is intended to allow construction of
a low dimensional summary plot that contains or is inferred to contain all of the regression
information available from the sample. Since a parametric model is not required, such plots
can be particularly useful at the beginning of an analysis.
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