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Abstract

The stationarity is one of the most important properties of a time
series. We propose robust sign tests for seasonal autoregressive process
to determine whether or not a time series is stationary. The tests have
an exact binomial null distribution and are robust to the outliers and the
heteroscedastic errors. Monte-Carlo simulation shows that the sign test is
locally more powerful than the QLSE-based tests for heavy-tailed and/or
heteroscedastic error distributions.
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1 Introduction

We consider the problem of testing of the random walk hypothesis for sca-
sonal time serics data. There have been several rescarch on this subject such
as Dickey, Hasza, and Fuller(1984), Hylleberg, Engle, Granger, and Yoo(1990),
So and Shin(1999), and So(2001). The usual OLSE-based tests suffer from the
size distortion by outliers and the normal assumption may be casily violated in
practice. Thus we propose tests which are robust to outliers and valid under
weaker assumption that includes any symmetric disturbances. Campbell and
Dufour(1995) first used this method for testing a random walk hypothesis. So
and Shin(2001) extended the sign test to a mean model and showed scveral
properties of the statistics such as the exact binomial null distribution, the con-
sistency, the robustness to heavy-tailed errors, and the invariance. In this paper
we extend the sign test to a seasonal model. The sign tests follow a binomial
null distribution so it leads to an exact tcst. The asymptotic distribution of the
test statistics is a normal regardless of the period of scasonality, thus scparate
tabulations of critical values are not required.
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2 The Test Statistics

Consider the seasonal first-order autoregressive, AR(1), model

Ye = pt T U (1)
U = pus_qg+e, t=1,...,n .

where {y;} is obscrvation at time ¢, p is the unknown parameter, y_g41,¥—d42,

.., Yo are the initial conditions, dis the period of seasonality, and pt; = prp4q,t =
1,...,n —d. In this model if d is 4, the time series represents a quarterly data.
And if d is 12, the time series represents a monthly data. We are interested in
the following hypothesis :

Hy:p=1 vS. H:p<l1

that the null hypothesis presents a seasonal random walk, that is, the time scries
has a seasonal unit root. We also suppose the model (1) satisfics the following
Assumption 1.

Assumption 1. {e;} is a scquence of errors with zero conditional median
and has no atom at zecro given Fy_g .

Dircctly from Assumption 1, we have

E[sign(e;)|Fi—g) =0  and Ple; = 0|Fi—4) =0 (2)
>
where sign(e;) = { Loe=20 . The test statistic we propose is
-1, e <0
n
San =) sign(ye — Ye-a)sign(ye-a = fie—a) )
t=1
where /i, is the median of g1, . .., y; for the mean model and Fy-measurable with

no atoms at zero. We consider two sign tests by the types of the mean adjust-
ment: the common mean type, Sj ,, and the scasonal mean type, S .. Since
both common and seasonal median satisfy the assumption that is Fi-measurable
with no atoms at zero, thosc can be represented by Sgn and follow the same
properties with Sy ,. The propertics are arranged in the following Lemma 1.
BIN(n,p) stands for the binomial distribution with the number of trials n and
the probability of success p.

Lemma 1. Let {u;} be a sequence of random variables satisfying Assump-
tion 1. and {v;} be a scquence of Fj-measurable random variables with no
atoms at zero. Then we can represent (3) as

San =3 1y sign(us)sign(vi—a)
and it satisfies that
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(a) {Saz, Fi}i-; is a martingale,

(b) (San + n)/2 ~ BIN(n,0.5).

PROOF.

(a) E[SanlFn-1]=F {Z sign(ug)sign{vi—q)

t=1

Fn—l}
n—1

=F [sign(un)sign(vn_d) + Z sign(us)sign(vi—q)
t=1

Fn-—l

n-1

sign(vn-q) F [sign{upn)|Fn-1] + Z sign(us)sign(vi—q)
t=1

n—1
= Z sign{us)sign{ve—d) = Sgn—1
t=1

(b) Let {e;} be iid random variables £ =1,...,n, and

: 1, >0 p=05
X‘zszg"(e‘)z{ -1 e:<0 5:0.5 .

If we let

X, +1 _{ 1 >0 p=05

Yi=—5 0 e<0,p=05"

then Y; ~ BIN(1,0.5) and

n

= sign(es) +1  Dop, sign(ey) +n
Y, = - ~ BIN(n,0.5).
; g ; 5 5 (n,0.5)

Since {Su}ier ~ {Xh, sign(ex) oy, thus (Sga +n)/2 ~ BIN(n,0.5). This
completes the proof of Lemma 1.

From the Lemma 1, therefore, if
San < 2By (n,0.5) - n, (4)

then we reject the scasonal random walk null hypothesis, and by the central
limit thcorem we have Sy n/v7 2, N(0,1). Thus, (4) is cqual to

Sd,n/ﬁ S —Za, (5)

and when it is attained, we reject the null hypothesis. Here, —z, stands for a
lower a—th quantile of the standard normal distribution.
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3 A Monte Carlo Study

In this chapter, we conduct a set of Monte Carlo experiments to investigate the
finite sample performance of the seasonal sign tests, S , and Sg ,, for testing the
seasonal unit root null hypothesis Hy : p = 1 against the stationary alternative
H, : p < 1. Because the DHF test is widely used in practice, we look at its size
and power and compare them with those of the seasonal sign tests.

We consider the seasonal AR(1) model with the common mean model

yt=:u‘+ut (6)
U = pug—qg+e, t=1,...,n; d=2,4,12,

where y, is the observation at time ¢, y; which is the mean of y;, and the initial
conditions y;,t = —d + 1,—d + 2...,0, are sct to zero. Besides of a normal
disturbances we consider a variance mixture(VM) and a Cauchy distributed
errors to examine the effects of heavy-tailed errors on both tests. VM has a
finite variance, but a Cauchy distribution has an infinite variance.

Table 1: Empirical sizes(%) and size-adjusted powers(%) of the mean-adjusted
tests for model y; = py;—q + ;. The number of replications is 10,000.

Common Seasonal

d n_ sizeV e p ~DHF® S5, DHF® S5,
1 120 412 N(0,1) 1 199 4.2 507  4.10
0.99 10.17 10.21 7.71 8.76

0.95 62.11 36.72 19.86 26.81

0.90 98.78 67.18 56.92 51.06

0.80 100.00 94.85 99.42 86.25

VM(1,25) 1 486  4.17 6.82 4.18

0.99 9.96 12.89 7.91 10.69

0.95 61.95 57.94 17.52  38.60

0.90 98.40 87.06 53.23 68.24

0.80 99.99  99.07 99.02 94.81

Cauchy 1 3.06 4.14 15.02  4.08

0.99 12.22  90.35 519 52.42

0.95 85.75 99.85 1.62 73.57

0.90 98.47  99.90 2,26 8747

0.80 99.44 99.95 21.95 98.19

1) size represents the exact size of S, and S ,,.

2) DHF® and DHF” denote common and seasonal mean adjusted test, respectively.

We use the recursive median adjustment for both test statistics. So and
Shin(2001) point out that the recursive mean or median adjustment improves
the power of a test. The reader is also referred to So and Shin(1999) and Shin
and So(2001). If we let Let 2., be the common recursive median of y;, where
Yy < ... <y are the order statistics of y;,7 =1,...,¢. Then fic: = Y(t+1)/2)
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for odd t and fict = y(/2) for even t. The fi,; denotes the seasonal recursive
median of y; and is the median of the observations observed in the same season
until the t-th observation.

Table 2: Empirical sizes(%) and size-adjusted powers(%) of the mean-adjusted
tests for model y; = pyi—q + €:- The number of replications is 10,000.

Common Seasonal
d n size? e p ~DHF® &g, DHF® Sy,
4 120 4.12 ARCH 1 9.84 4.17 9.66 4.13
0.99 5.97 6.17 5.02 6.17
0.95 1545 18.43 7.81 13.09
0.90 38.00 35.62 13.84 21.49
0.80 80.20 59.67 35.28 38.85

1) size represents the exact size of S and S;/,,.
2) DHF¢ and DHF? denote common and seasonal mean adjusted test, respectively.

We sct the nominal level as 5% for every set of experiments, but Sy, is a
discrete test of which the nominal level is 4.12%. Thus we adjust the sizes and
powers to 4.12% cxcept for the size of DHF. We investigate the characteristic
of DHF and Sy, with heavy-tailed disturbances in Table 1 and with ARCH
disturbances in Table 2. The common characteristic of Table 1 and Table 2 is
that in contrast to DHF the size of Sg,» quite close to its exact level for all
cascs. In Table 1 the powers of S, and Sj ,, are locally higher than thosc of
DHF€¢ and DHF?, when p is close to 1. Therefore Sa,n is locally more powerful
than DHF under the heavy-tailed disturbances. Moreover Table 2 displays the
result under the ARCH errors, the sizes of DHF are 9.84 and 9.66 for common
and seasonal case, respectively. And those are much distorted with its nominal
level, 5%. However, the size of S:i:,n and S;»n mcet those nominal level. Thus
Sa,n are very applicable when the disturbances are heteroscedastic.

4 Conclusion

Under the heavy-tailed errors, ARCH, and hetcroscedasticity, regardless of the
period of the seasonality, the seasonal sign tests are more robust and locally
more powerful than the OLSE-based test, DHF. The sign tests follow an cxact
null distribution which is binomial, regardless of the period of the seasonality.
Therefore the tests are very flexible and is useful for unit root tests not only for
random walks, as shown in Campbell and Dufour(1995) and So and Shin(2001),
but also for the scasonal autoregressive models.
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