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Abstract :

In this paper, direct numerical simulation of decaying compressible turbulence with passive scalar
is performed by using 7™ order upwind difference scheme or 8™ order group velocity control scheme.
The start Reynolds number (defined by Taylor scale) is 72 and turbulent Mach numbers are 0.2-0.9.

The Schmidt numbers of passive scalar are 2-10. The Batchelor k! range are found in scalar spectra,
and the high wavenumber spectra decays faster with increasing turbulent Mach number. The extend
self-similarity (ESS) is found in the passive scalar in compressible turbulence.
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1. Introduction

There are many papers report the DNS of passive scalar in isotropic turbulence (forcing
turbulence or decaying turbulence), but all of those cases are incompressible. However, DNS for
passive scalar in compressible isotropic turbulence may be more interested in aeronautics and
astronautics. Some results of DNS for passive scalar in decaying compressible turbulence with much

higher turbulent Mach number ( M = 0.9) are performed in this paper.
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2. Direct numerical simulation and data verification

The control equations are compressible Navier-Stokes equations and the transport equation for
passive scalar. Flux vector splitting is adopted for the convection terms, the 7™ order upwind
difference scheme (UD7)!" or 8" order group control schemes (GVC8)”! are used to discretize it. 8"
order centre difference scheme is used to discretize viscous terms, 3 stage TVD type Runge-Kutta
method % is used for time advance. In order to improve the computing efficiency, the grid size in
computing the scalar function is different comparing with grid size for the basic physical parameters.
8" order Langrage interpolation are used for grid size changing.

The computation cases are showed in following table, where Re ; is Reynolds defined by Taylor

scalar and M, is turbulent Mach number, Sc is Schmidt number of passive scalar.

CASE Flow fields Re, Mt Sc Scheme Grids for Grids for
(tlt=1) flow passive scalar
DI FD1 72 0.2 5 UD7 256° 512°
D2 FD2 72 0.5 5 UD7 256° 512°
D3 FD3 72 0.7 5 UD7 256° 512°
D4 FD4 72 0.9 5 GVC8 256° 512°
El FE1 72 0.5 2 UD7 256° 512°
E2 FE2 72 0.5 10 UD7 256° 512°
EIT FEIT 72 0.5 2 UD7 128° 256°
D2Ta | FD2Ta 72 0.5 5 UD7 128’ 256°
D2Tb | FD2Tb 72 0.5 5 GVC8 256° 512°

The code for flow computing is verified in paper [1,2]. Figure 1 shows the time history of root-
mean-square of passive scalar for case D2 agree well with those of case D2Ta, which verify the
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passive scalar computing of those two €ascs. For validation of the computed results, the number of
grid points is doubled. Agreement of the computed results with different grid size confirms our results.
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Figure 1. Time history of root-mean-squarc of passive scalar for case D2 and D2T

3.Results and conclusions
Figure2 shows the scalar spectra E g[31 for scalar fields of FD1-FD4 (scalar fields at £/7 =1 of

cases D1-D4). We can find that the high wavenumber spectra decays faster with increasing turbulent
Mach number. Figure3 shows the normalized scalar spectra[S] for FE1 FD2 and FE2, indicated that

Batchelor k! spectral is universal for all those cases
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Figure 2. Scalar spectra of FD1-FD4. Figure 3. Normalized scalar spectra forﬂB
FE1,FDland FE2

Figure4. shows the isosurface of scalar gradient normalized by 1ts root-mean-square of FDA,
which shows the sheet structure of passive scalar in compressible turbulence.

Figure 4. Isosurface of normalized scalar gradient of FD4
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Figure 5 plots p-th order passive scalar structure function as a function of 3" order passive scalar
structure function in FD2, which means ESS (Extend Self-Similarity) holds in passive scalar
turbulence. Figure 6 shows the relevant scaling exponents for FD1-FD4. This figure indicates that the
compressibility has little effect on passive scalar’s scaling exponent. Figure 7 shows the relevant
scaling exponents for FE1, FD1 and FE2, where the Schmidt numbers are 2, 5 or 10 respectively. This
figure shows scaling exponent become smaller with increasing Schmidt number, which means passive
scalar become more intermittent when Schmidt number increase.
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Figure 5. p-th scalar structure function as a function of 3" scalar structure function for FD2
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Figure 6. passive scalar scaling exponents for FD1-FD4
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Figure 7. passive scalar scaling exponents for FE1,FD2 and FE2
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