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Abstract
The stability of flows induced by a surface acoustic wave (SAW) propagating along the de-
formable walls in a confined parallel-plane microchannel or slab in the laminar flow regime is
investigated. The governing equation which was derived by considering the nonlinear coupling
between the deformable or waving interface and viscous fluids is linearized and then the problem
is solved by a verified code based on the spectral method together with the associated interface
and boundary conditions. The value of the critical Reynolds number was found to be near 1439
which is much smaller than the rigid-wall case : 5772 for conventional pressure-driven flows.

Keywords : spectral method, precondition, deformable wall.

1. Introduction

The application of linear and/or nonlinear surface acoustic waves (SAW) and their relevant
studies have been found in diverse (researches) fields like condense matter physics, materials
science or surface chemistry/physics, environmental, communication and sensor technologies,
etc [1]. Fundamental or theoretical and experimental studies of interphase nonlocal transport
phenomena in a gas-solid system which appear as a result of a different type of non-equilibrium
representing propagation of a surface acoustic wave (SAW) in a solid-wall had been performed
since late 1980s. Meanwhile, the need in current applications of MEMS (MicroElectroMechan-
ical System) [2] and especially microfluidics which require handling fluids has stimulated some
new areas of research : invention of flexible components from which to assemble functionally
complex fluidic devices, and examination of the fundamental behavior of fluids in deformable
microchannels [2]. The challenges are how to overcome or control macroscopically ambient or
environmental noises which are of significance in microdomains [1-2].

We have investigated the transport within a deformable microslab which will be common in
microdomains of bio-MEMS applications and found certain interesting physical behavior due
to the weakly nonlinear coupling between the surface wave and the velocity-slip along the wall
[2]. To further study the stability issues for flows of Newtonian fluids in microdomains, we shall
solve the problem by a verified code which was based on the spectral method [3-4] to obtain
the neutral stability boundary curves. In this study, we shall assume that the Mach number
Ma « 1, and the governing equations are the incompressible Navier-Stokes equations which are
associated with the no-slip boundary conditions along the deformable walls.

2. Formulations

We consider a 2D channel of uniform thickness filled with a homogeneous Newtonian viscous
fluid. The flat-plane walls of the channel are rather flexible, on which are imposed traveling
sinusoidal waves of small amplitude a (due to SAW). The vertical displacements of the up-
per and lower walls (y = d & —d) are thus presumed to be n and —), respectively, where
7 = acos 2T"(x — ct), A is the wave length, and ¢ the wave speed. = and y are Cartesian coor-

dinates, with z measured in the direction of wave propagation and y measured in the direction
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normal to the mean position of the walls.

We have a characteristic velocity ¢ and three characteristic lengths a, A, and d. It would be
expedient to simplify these equations by introducing dimensionless variables (w.r.t ¢ and d)
[2]. The amplitude ratio e, the wave number o, and the Reynolds number Re are defined by
e =a/d, a = (2nd)/), Re = (cd)/v. The 2D (x- and y-) momentum equations and the equation
of continuity could be in terms of the stream function 1 if the pressure (p) term is eliminated.
We shall seek a solution in the form of a series in the parameter € : ¥ = g + ey + €2hg 4 - - -,
(0p/0z) = (8p/Bz)o + €(Op/0x)1 + €X(Op/OT)a + - - -, with u = Ov/By, v = —v/0z. The final

governing equation is

O G2+, Vs — VP = =y, VP4 D (1)
ot Y ¥ z Y™ Re ’ T 0z2  Oy?’

and subscripts indicate the partial differentiation. Thus, we have
0 1
57V %o + Yoy V0w = Yox Vi0oy = 5=V, (2)
0 1
aVZ’l/)l + ¢0yv2wlz + ¢1yv2¢0z - w()zvzwly - zplz:vzﬁ()bOy = EV‘WH, (3)

and other higher order terms. The gas is subjected to boundary conditions imposed by the
symmetric motion of the walls and the zero velocity-slip : © =0, v = +9n/8t at y = £(1 + 7).
The boundary conditions may also be expanded in powers of 1 and then e [2]. Equations
above, together with the condition of symmetry and a uniform constant pressure-gradient in
the x-direction, yield : 1y = Ko(y — 4%/3), Ko = Re(—8p/0z)0/2, ¥1 = {d(y)ei®==t) 4
qﬁ*(y)e”io‘(x_t)} /2, where the asterisk denotes the complex conjugate. A substitution of 1/; into
Eqn. (3).yields

d2

d2
(a7 e

2 +iaRe[l — Ko(1 - y2)]}(a—y—2 — a?)¢ — 2iaKgRe¢ = 0. (4)
The associated boundary conditions are ¢,(+1) = 2Kq, ¢(£1) = £1. To obtain the stability
characteristics for SAW driven flows by using verified codes developed before [3] for calculating
the Orr-Sommerfeld spectra, we transform equation (4) into the Orr-Sommerfeld form by rescal-
ing and redimensionalization of physical parameters and variables mentioned before (e.g., the
careful selection of Ky and c). The matrices thus formed are of poor condition because they are
not diagonal, symmetric. We precondition these complex matrices to get less errors [3]. Here
we adapt Osborne’s algorithm [5] to precondition these complex matrices via rescaling, i.e., by
certain diagonal similarity transformations of the matrix (errors are in terms of the Euclidean
norm of the matrix) designed to reduce its norm [3]. The reduced matrix is of upper Hessenberg
form. We then perform the stabilized LR transformations for these matrices to get the eigen-
values.

3. Preliminary Results

We obtain those spectra for the SAW driven flow with the associated dynamic and/or kinematic
boundary (interface) conditions by carefully adjusting the Reynolds number (Re) and the wave

number (a). After intensive calculations, we finally obtain the neutral boundary curves for
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specific Re and o and plot them into Fig. 1. We have roughly Re., = 1439 for SAW driven

flows. The critical Reynolds number for conventional flows (without SAW driven) is around

5772 [3]. Acknowledgements. This porject is supported by the National Natural Science Foundation of

China under the grant No. : 10274061.

References

[1] Hess P., ”Surface acoustic waves in materials science”, Phys. Today 55, 42-47 (2002).

2] Chu K.-H. W., "Transport induced by a surface acoustic wave along a slab”, Eur. Phys. J.

Appl. Phys. 18, 51-56 (2002).

[3] Chu W. K.-H., "Stability of incompressible Helium II : two-fluid system”, J. Phys. : Con-

densed Matter 12, 8065-8069 (2000).

[4] Gottlieb D. and Orszag S.A., Numerical Analysis of Spectral Methods :

cations (NSF-CBMS Monograph No. 26, SIAM, 1977).

[5] Osborne E.E., "On pre-conditioning of matrices”, J. Assoc. Comput.
(1960).

Theory and Apli-

Mach. 7, 338-345

Deformable wall : No-slip BC

Rigid wall : No-slip BC

wave number : o

L 1

] 1
2000 4000 6000 8000 10000

Re ( Reynolds number)

Fig. 1 Wall effects on the neutral stability boundary of the plane
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Poiseuille flow. The critical Reynolds number of the flow for the deformable-wall,

rigid-wall cases (Re.,) are ~ 1439,5772, respectively.
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