N193 SH=EPHess| EAS22EUS =22 MI10A K135 (2003.5)

The Designs and Implementation of Trusted
Channel between Secure Operating Systems

Joon-Suk Yu*, Jae-Deok Lim*, Jeong-Nyeo Kim*, Sung-Won Sohn*
*Information Security Research Division, ETRI

e-mail : Jsyu92@etri.re.kr

Abstract

Trusted channel provides a means of secure communication and it includes security services such as
confidentiality, authentication, and so on. This paper describes the implementation of trusted channel between
secure operating systems that integrates access control mechanisms with FreeBSD kemel code[1]. The trusted
channel we developed offers confidentiality and message authentication for network traffic based on the
destination address. It is implemented in the kernel level of IP layer and transparent to users.

1. Introduction

There exist lots of security holes in multi-user
environment such as Unix or Linux and the concentrated
nights on root user and Trojan horse are the main weaknesses
among those. These weaknesses may cause serious problems
but we can cope with the m effectively by using access
control mechanisms such as MAC(Mandatory Access
Control) or RBAC(Role-Based Access Control).

{1] presents the secure operating system that integrates
various access control mechanisms with FreeBSD 4.3 kernel.
The integration provides reasonable solution to the problems
caused by the system security holes mentioned above.
However, it doesn’t provide any security against network-
based attack such as spoofing or sniffing.

These days, most of systems are connected to the open
network such as Internet. It means that the network traffic
between the systems can be easily accessed by anyone.
Considering that the value of communicated information is
getting increased, a means to protect network traffic from
unauthorized access is essential in order to guarantee the
security of the whole system.

In this paper, we describe how to construct the secure
communication channel, called trusted channel, between two
systems which secure operating system is installed on.
Generally, trusted channel provides confidentiality,
authentication, and so on and the trusted channel we
developed provides confidentiality —and message
authentication{2).

This paper is organized as follows. Chapter 2 gives the
overview of the functionalities of the system. The design and
implementation issues are presented in chapter 3 and we
compare the performance of the system in chapter 4. Lastly,
the conclusion and future work is given in chapter 5.

2. System Overview

As mentioned earlier, the purpose of the trusted channel
we developed is to offer confidentiality and message
authentication for the network traffic between secure

operating systems. To provide confidentiality and message
authentication service, sender encrypts outgoing packet and
adds authentication information to the packet. In other hands,
receiver decrypts the received packet after verifying the
authentication information of it.

Sender decides if outgoing packet requires the trusted
channel service based on the destination of the packet. In
other words, the system, which secure operating system is
installed on, has the list of IP addresses and if the destination
address of outgoing packet is in the list, trusted channel is
applied. If trusted channel is applied, the next_protocol field
of IP header is replaced with new value representing that
trusted channel is applied to the packet.

When the packet arrives at the destination, the receiver can
recognize the TC-applied packet by checking the
next_protocol filed of IP header and performs an appropriate
process.

We assume that all the systems have shared the algorithm
and key for encryption and authentication in advance. The
details of the system will be given in the rest of the paper.

3. Designs and Impiementation

3.1 Architecture and General Issues

The trusted channel we present is applied to the network
traffic between two secure operating systems, which enhance
the security by combining access control mechanisms with
normal operating system, FreeBSD 4.3. The trusted channel
is implemented in IP layer and provides confidentiality and
message authentication service for specific outgoing packets.
64 bits symmetric encryption algorithm, blowfish, is used for
confidentiality and HMAC-MDS5 is used for message
authentication. It is known that blowfish has good
performance comparing with DES or IDEA[3]. And blowfish
can use variable size of key from 32 bits to 448 bits[3, 4].
However, we fixed the size of key for convenience of
implementation. Figure 1 shows the architecture of the
system.

2117

H193 St=zZH2IES ZHSSUHNY =28 H10H H 1S (2003.5)

Figure 1. Architecture of the trusted channel

3.2 Configuration files and initialization
There are three configuration files for the trusted channel
service and they are listed below.

* Encryption key file: this file stores 128 bits key for
packet encryption/decryption.

* Authentication key file: this file stores 128 bits key for
message authentication.

s Host file: this file contains the IP addresses of hosts that
trusted channel service to be applied to.

All the configuration files are generated by a special user
who has security manager role, called security manager, at
system installation time and they are commonly used among
all of secure operating systems that are supposed to provide
trusted channel service. The configuration files are
maintained in a special directory protected by RBAC and
only security manager of the system can access the directory.
It means that the configuration files are secure from
unauthorized access only if RBAC is robust.

The configuration files are automatically loaded into kernel
memory at system booting time and the system refers the
loaded configuration file data during system running time.
Using kernel memory increases system efficiency by
reducing the overhead raised from frequent disk access.
Moreover, it is more secure than using other memory space.

3.3 TC Header and Packet Output/Input

When the trusted channel service is applied to a packet, TC
header is added to the packet. Figure 2 shows the structure of
the TC-applied packet and the service area provided. The
shade is TC header in the figure 2. Followings are the
description of each TC header field.

* Authentication data field: this field presents the hash
value of the packet.

* IV(Initial Vector) field: this field is used for packet
encryption/decryption.

* Next_hdr. field: this field contains the next_protocol
field of IP header.

* HLEN/PLEN field: this field presents the TC header
length and padding length.

¢ MAC class and MAC category field: These fields can
be used for setting up the security information at remote
system. These are reserved for future use.

0 15 31

UOREOBUINY

Payload
Padding

Figure 2. Packet structure

The procedures for outgoing packet at sender and incoming
packet at receiver are different and we describe them
hereafter.

When a user process requests to send data, the request is
passed to the output interface of IP layer, ip_output(), through
the interface of upper layer(5, 6]. Ip_output() performs not
only all the tasks for IP output processing that includes
routing and fragmentation but also trusted channel related
tasks[6, 7].

Making a decision over the trusted channel application and
applying the trusted chammel to the packet are done just
before packet fragmentation. Making a decision is based on
the destination address of outgoing packet. If the destination
address of the packet is in the address list loaded into kernel
memory from host file, a specific variable indicating that the
packet requires trusted channel service is set. Ip output()
calls a routine for the trusted channel if the variable is set.
Otherwise, ip_output() just skips the procedure for the trusted
channel service and continues normal IP processing. The
routine for the trusted channel performs the following tasks.

@ It generates TC header and reconstructs the outgoing
packet.

@ It encrypts the packet.

Q® It computes authentication data for the packet and fills
up the appropriate field of TC header with the
authentication data.

The next_protocol field of IP header is set up with a specific
value so that the receiver is able to recognize TC-applied
packet in the procedure ~. The original value in the
next_protocol field is maintained in the next_hdr. field of TC
header and figure 3 depicts this.

2118

193 s3FEXMaIES ENstsg

HOs =2& M0 X135 (2003.5)

Payload

next-protocol

Before applying trusted channel

1P Header TC Header

next-protocol

next-hdr.

After applying trusted channel

Figure 3. TC header field set up

After finishing all the procedures, the control is returned to
ip_output() and it fragments the reconstructed packet if the
packet size is larger than the maximum packet size for the
outgoing interface. And it passes the packet to lower layer.
When a TC-applied packet arrives at destination, the packet
is passed to the input interface of IP layer, ip_input(), through
the interface of lower layer{5, 6]. Ip_input() performs all the
tasks for IP input processing that includes checking the
packet size, reassembly and so on[6, 7]. It also performs the
trusted channel related tasks just before passing the packet to
upper layer protocol.

With regard to the trusted channel, ip_input() decides if the
trusted channel is applied to the packet first by checking the
next_protocol field of IP header. If the next_protocol field of
IP header indicates that the trusted channel is applied to the
packet, ip_input() calls a routine for the trusted channel
processing. Otherwise, ip_input() skips the trusted channel
processing just like ip_output().

The routine for the trusted channel processing performs the
following tasks in turn.

@ 1t verifies the authentication of the packet. If the packet
is not authentic, the packet is discarded.

@ It decrypts the packet only if the packet is authentic.

@ Itremoves TC header and padding from the packet.

IP output processing 1

to upper layer
IP input processing 2

IP output processing 2

Figure 4. Procedures for packet output and input

The next_protocol field of IP header is replaced with original
value maintained in the next_hdr. field of TC header in the
procedure 4. The control is returned to ip_input() and it
passes the packet to the upper layer protocol. Figure 4 shows
the procedures for packet output and input.

4. Performance

Packet encryption is essential to achieve the purpose of the
trusted channel service and because encryption is time-
consuming task, it always reduces the performance of system.
We transferred same data files in two different environments
respectively to measure the transmission time differences.
One is the data transmission between secure operating
systems and the other is the data transmission between
normal FreeBSD systems. Figure 5 shows the comparison
result of transmission time for test data. We used 50MB and
100MB text files as test data.

18
16
14
12

sec. 10

FreeBSD
L SecureOS

(@IS 2]

50MB
Figure 5. Comparison of performance

100MB

As shown in figure 5, when the trusted channel is applied,
the performance goes down to about 70% comparing with the
transmission between normal FreeBSD systems. Because the
size of most user data transferred through the network is
usually smaller than that of test data, the performance of the
system is acceptable to the system users.

5. Conclusions and Future Work

Secure operating system that integrates various access
control mechanisms with normal operating system at kernel
level offers reasonable solution to the security problems
caused by centralization of rights or Trojan hose. However, it
doesn’t provide any means to protect communicated traffic
from sniffing or spoofing.

We implemented and described the trusted channel
providing confidentiality and message authentication for
network traffic between secure operating systems. The
trusted channel we developed is implemented in kernel level
and provides packet encryption and message authentication
based on the destination address of the packet. Users’

2119

H198 SI3FTFHEISS EHstswd

i3 =28 H10A 135 (2003. 5)

intervention is no required during system running time and
users can transfer their data transparently. However, it might
be cumbersome that security manager must set up the
configuration files manually in advance. Even though the
developed system is initial version, more automated and easy
configuration method is required for convenience.

" References

[1]J. G. Ko, J. N. Kim, & K. L. Jeong, “Access Control for
Secure FreeBSD Operating System”, Proc. of WISA2001,
The Second International Workshop on Information
Security Applications, 2001.

[2] “Common Criteria for Information Technology Security
Evaluation, Part 2: Security functional requirements,
Version 2.1, 1999.

[31 B. Schineier, “Description of a New Variable-Length Key,
64-Bit Block Cipher(Blowfish)’, Fast Software
Encryption, Cambridge Security Workshop Proceedings,
Springer-Verlag, 1994.

[4] B. Schineier, Applied Cryptography, John Wiley & Sons,
1996.

[5] M. K. McKusick, K. Bostic, M. J. Karels and J. S.
Quarterman, The Design and Implementation of the
4.4BSD Operating System, Addison-Wesley Publishing
Company, 1996.

[6] FreeBSD 4.3 Source Code.

[7] Behrouz A. Forouzan, TCP/IP Protocol Suite, McGraw
Hill, 2002.

2120

