31.4 / Invited

“Warm-up” of a n-cell Liquid Crystal Device

Gi-Dong Lee, Philip J. Bos
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
Seon Hong Ahn and Kunjong Lee
AMLCD Division, Samsung Electronics, Kiheung, Kyunggi-Do, Korea

Abstract

A fast Q-tensor method, which can model the defect
dynamics in a liquid crystal director field is presented. The
method is used to model the defect dynamics occurring
during the “warm-up” of a mcell device.
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1. Introduction

The pi-cell type device has some advantages for
direct view LCDs, such as a wide viewing angle and fast
switching. However a complicating feature is that it
operational state is topologically inequivalent from the zero
volt state.  So when the operation of the device is begun,
a disclination must nucleate and move across each pixel. It
is the point of this paper to investigate the dymanics of this
defect nucleation and motion.

In order to achieve the LC configurations in the
equilibrium state, we need to calculate the minimum free
energy. For the calculation of the free energy, we use the
Gibb's free energy of the LC cell that is composed of
elastic constants and electric field terms.

The elastic energy can be expressed with Oseen-
Frank vector representation that uses 3 elastic constants
(splay, twist and bend) and Landau-de Gennes’s Q-
representation method [3]. The Oseen-Frank vector
representation method is the more common method, but it
cannot handle defects that may happen in the LC cell
because it assumes that the order parameter S is a constant.
As a result, it also cannot handle transitions between
topologically different states (for example, splay to bend
transition in the w cell). The other method, the Landau-de
Gennes’s Q-tensor representation, can handle defects and
topological transitions in addition to the normal dynamic
behavior of LC cells by combining the thermal and strain
free energy. It implies that we can achieve the information
of the order parameter S in addition to LC director
components #ny, n, and n,. In the Q-tensor method, 2 elastic
constants are yielded if we use the 2™ order Q-tensor
expansion. However, it has been proved that degeneracy
between splay and bend elastic constants can be removed if
we use the 3™ order expansion [4]. Berreman has shown the
refation between the Oseen- Frank elastic terms and the 2nd
and 3™ order terms of the Q-tensor [5]. In spite of these
merits, the usual Q-tensor method is a complicated
numerical process and requires a very small time step to
prevent the divergence of the calculated results.

In a previous report [6], the defects in a 7 cell were
modeled by using the Dickman$ Q-tensor method.
Dickman had shown that Oseen-Frank vector representation
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could go directly to the Q-tensor representation if we use
only one 3™ order Q component [7]. However, Dickman
considered only a constant value of order parameter S, so
that the results are only qualitative in their description of
defects. Previously, we have shown the fast Q-tensor
method, which can calculate the order parameter, by adding
the temperature terms in addition to the Q-tensor
representation of Oseen-Frank free energy terms [8]. And
we have derived an improved normalization method for the
faster calculations.

In this paper, we model dynamical behaviors of the
LC director field with defects in a patterned-electrode n
cell. The = cell is a fast response LC device that exhibits a
wide viewing angle, so it has good potential for TV
applications. However, issues with the n cell include a
transition from a splay state at lower voltage to a bend state
at higher voltage that involves the nucleation and motion of
defects. In order to model the patterned n cell, we first
review the derivation of the Q tensor method, then by using
the fast Q-tensor method, we calculate order parameter S as
well as director components ny, n, and n,.
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Figure 1. The “warm-up” of a n-cell is the due to the transition
from the splay state that exists at zero volts to the operational bend
State.

2. Fast Q-tensor Modeling Method

As mentioned above, the Gibb%s free energy
density (f;) consists of elastic energy density term of LC
director (f;) and external electric free energy density term
(/). Simply, we can achieve the total energy by integrating
the calculated GibbS free energy density. Berreman has
shown that Landau-de Gennes’s. Q-representation for the
strain energy density could be expressed as follows {5],
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where the constants Cj'™ is related to elastic constants and
Gj™ can be defined with values of Q-tensor.

In other way, we can express elastic energy
density of LC director with vector form. The vector form of

the Frank-Oseen strain free energy density can be expressed
as below,
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where K;;, K, and K;; represent the splay, twist and bend
elastic constants, respectively. K, is related to surface
anchoring energy and, in the case of strong anchoring
energy state, K, is not needed. g, is the chirality of the L.C.

Dickman derived the Q-tensor form of the Frank-
Oseen strain free energy density.
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The Levi-Civita symbol e;; is 1 when subscripts are in the
order of xyz, yzx or zxy, and is 1 if the subscript order is
xzy, yxz ot zyx, 0 otherwise. The &, is Kronecker$ delta,
which is 1 if j equals £, and 0 otherwise.

The electric free energy density for the Q-tensor form
i1s derived directly from £, = D-E/2:
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By using eq.(3) and (4), we can calculate the LC director
field from the Q-tensor. In spite of this merit, this method
cannot model the dynamic LC configuration including
defects because it assumes a constant order parameter S that
is equal to the value of S at the temperature where the
elastic constants were measured.

In order to calculate order parameter S at each grid
point, we need to add a temperature energy term that, in the
absence of director field distortion, determine S as a
function of temperature because the order parameter S is
related directly to temperature. Basically, we can formulate
the thermal energy density by using a simple polynomial

expansion in terms of the Q- tensor that is expressed as
follows [3],
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The total free energy density is the sum of equations (3),(4)
and (5) , so that the Gibb"5 free energy density(f,) can be
described as the sum of these three energy densities.

In order to achieve the equilibrium state of the
director configuration, it is typical to use the Euler-
Lagrange equation. The following is the Euler-Lagrange
equation for the electric potential and the director
components under the Cartesian coordinate system. By
solving eq. (6), potential distribution and LC configurations
are obtained, respectively.

0 ==[£,],, (6)
0=-[f}=v-p
where
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The terms [f;]ox and [f;];- represent the functional
derivatives with respect to the (), and voltage V,
respectively. By using these equations, we can calculate the
components of the 3 by 3 matrix Q and voltages in each
grid. For the calculation, therefore, we need to formulate
functional derivative equations that are described as
follows,

[felox = strain  term([f]s) + voltage term([f]y) +
temperature term([f;])
(7)

For the equilibrium state, the Q-tensor and voltages at
each grid point should be recalculated in every time step
until they exhibit stable response. We can achieve this by
using the dynamic equation y (0Qu/0f) = -[feloi. Where y is
rotational viscosity. To obtain an equilibrium state, we
applied relaxation method based on dynamic equation for
numerical calculation. As a result, the formulated relation
between Q tensor of next time Q}k“”’ and that of current

time QM"r is as follows,

0,7"=0," +%—‘-[fg . (8

Using this equation, the Q-tensor components can be
updated at each time step, so that the final static value of
the Q-tensor is the equilibrium state. The order parameter S
is related to Q-tensor in the equation by S* = 1.5 (Q-Q) and
we can get this simultaneously with the Q components.
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3. Normalization Method

In a previous publication® we have shown that there
can be problems with the normalization condition based on
the traceless ness of the Q tensor: O, =(Q;; ? T,/3).

We showed that it is possible to find an improved
-normalization condition: Q; = {0, ? T,/3} * { S{T,+ S)}. It
can be seen that O, + 0,, + O,; = 0 so the above condition
causes the O tensor to be traceless, and that the new

normalization condition is simply the old one multiplied by
the factor: S/(T,+ S).

4. Modeling for L.C the Dynamical Behavior

of a Patterned = cell

In considering to proceed with the calculations, we
expect from experimental observations that the spatial
region where the order parameter varies from its bulk value
will be quite small, possibly on the order of molecular
dimensions. This means that for the real system to be
modeled accurately, we will need to have grid points in the
vicinity of a defect be spaced at approximately molecular
dimensions. To be able to model a pixel that is 10 um wide
and in a cell that has a 10 um cell gap would require
approximately 1 million grid points if a uniform grid
-spacing 18 used. If a smaller number of grid points is used
we expect that deformed regions of the director filed can
“disappear” between grid points [7] before the elastic
distortion energy has reached the point of causing the order
parameter to decrease from its bulk value. As a result, if we
consider a 10 um pixel size with a reasonable number of
grid points, we will be unable to see variations in the value
of the order parameter. Figure 2 demonstrates this point.
In this case we have considered a device that has a
patterned electrode and a pretilt angle of zero. With this
geometry, if we start with zero volts applied between the
top and bottom electrodes, and increase it, we expect to see
the formation of a reverse tilt wall, followed by the
formation of a pair of disclination lines (m= +- ) as
described by Bouligrand [3]. If we model 50 x 50 grid
points, we can not see a variation in the order parameter
like-in Fig. 2 (b) if a 10 pum cell is considered, but it is
possible if the cell thickness is reduced to 0.1 um (Fig. 2
(¢)) as in this case the grid point spacing is reduced to be on
the order of the molecular size (the region of distortion
cannot. "slip. between grid points” and the local elastic
distortion energy increases to the point of causing a
lowering in the order parameter). Figure 2 (c) shows that

with the values of A,~A, equal to Al0 ~A f ( the expected
values of the temperature coefficients *) the spatial size of
the region of variation in the value of the order parameter is
what was expected. However, if we consider the cell

thickness of our experimental cell, we are not able consider

grid points spaced as tightly as in figure 2(c). Therefore
we will reduce the values of A~A, to be 0.01 the values

- found for A,0 --Af . In this case the defect nucleation and

motion is-expected to be similar to that which would be
observed, but the region of defect size will be much larger
(a factor of approximately 100) than could actually occur.
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0.1

Figure 2. The dependency of the order parameter S on the
grid size: (a) a simulated structure (b) the order parameter S

with A;~4, = A’ ~A;, L is 10 um and 3 V. Each line
represents equi-S line in the range of 0.575 ? 0.595. (c) the
order parameter S with which L is 0.1 um and 1.6 V. Each
line represents equi-S line in the range of 0.1 ? 0.6 with 0.1

order parameter step value. There were 50 x 50 grid points
in the zx plane, of which half are shown in (d).

Figure 3 shows the change of the order parameter
S in the patterned 7 cell as the applied voltage is changed.
We assumed hard anchoring energy at the surface of the
cell, so that the order parameter S at the surface is always
higher than in the bulk of the cell. Figure 3 (b) shows the
variation of the order parameter S at 2 V. On the center of
the electrode, a wall is formed. In the Fig. 3 (c), we can
confirm that a pair of defects is generated on the surface of
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Figure 3. The calculated order parameter S in the n cell : (a)
adVdhlat2V)atdVdatsSVi(e)ato6V. 4,~4,=

0.01 (A, ~ A4;) and the normal grid points were 50 x 50.

Each line represents equi-S line.

the electrode. The order parameter S of those positions is
reduced by around 0 and it implies that topologically
inequivalent phase transition between splay and bent begins
at the center point in the electrode. In terms of these
phenomena, de Gennes predicted that the transition of a
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reverse tilt wall to a pair of disclination lines.. Higher
voltage makes the pair of defect move to the edge of the
electrode like Fig. 3 (d) and (e).
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Figure 4. . 2-dimensional director calculations for the
modeling of the mw cell: (a)at2 V (b)at4 V (¢) at 6 V under
the same condition as Fig. 7. The director orientation is
shown for half of the calculated grid points. The
orientation of the cylinders gives the local director
orientation, while their length is proportional to the order
parameter S (the directors all lie in the plane of the figure).
The solid lines represent equi-potential lines. The electric
field direction is normal to the equi-potential line. The oval
in Fig. (a) highlights the high elastic strain region where the
pair of defects could nucleate for the case of a low
anchoring energy. The circles in Fig. (b) highlight the line
disclinations after they separated and moved toward the cell
surfaces. The circles in Fig. (b) highlight the moved line
disclination to the each edge of the electrodes. |

Figure 4 shows the calculated director
configuration of the patterned = cell in Fig. 5. In this figure
the length of the cylinders is proportional to amplitude of S,
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and the orientation of the cylinders gives the director
orientation. From the figures, we can understand the
generation of the defect pair. Figure 4 (a) shows the region
of high elastic distortion in center of the cell. In figure 4b, a
pair of defects has formed. After the defects have formed
on the electrodes, it is clear that movement in opposite
directions along their respective surfaces further lowers the
elastic energy contained in the cell. This process is
consistent with the experiments and shows the dynamical
behaviors in the 7 cell.

5. Conclusions

The dynamical behavior of the patterned w cell by
using a fast Q-tensor method has been discussed. It allows
us to understand the generation of the defects in the cell as
well as normal LC dynamical properties. We showed a non-
uniform potential distribution caused a reverse-tilt wall over
a patterned electrode, so that a pair of defects formed and
separated. The defects finally moved to lower energy state
of the electrode edge. The calculated results explain well
the experimental behavior including defects. We expect a
further increase in accuracy of these results if we consider
soft anchoring energy of the surface and surface
morphology effects.
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