
1. Introduction

T his paper is concern ed w ith an an alyt ical
descript ion of st eady flow of a viscou s ,
therm ally - conducting compres sible ga s w hich
is contain ed in a rapidly - rotat ing infinitely - long
cylin drical pipe. T he problem is ch aract erized

by the sm allness of the Ekm an number E of

the sy stem , E 1. In the basic st ate , the pipe
rotat es steadily about th e lon gitudin al central

ax is at con st ant rot at ion rate , and the pipe
an d g as are in therm al equilibrium at con st ant

t emperature T *
00 . H ere, the rot at ion rate is

sufficient ly high so that th e compres sibility

effect , as represent ed by finite v alues of the

M ach number M of the fluid sy st em , is
significant . A lso, th e effectiv e acceleration in
the radial dir ection ov erw h elm s th e
conv entional earth ' s gravitat ion al accelerat ion .
Un der these circum stances , the g as in th e pipe
is in rigid - body rotat ion , and th e den sity
increa ses ex ponentially in the radially - outw ard
direction [ e.g ., Sakurai & M atsuda (1974),
N akay am a & U sui (1974), Bark & Bark
(1976)]. T he flow is now generat ed out of this
ba sic - state of rigid - b ody rot at ion w hen a small
t emperature perturbat ion is imposed to the pipe
w all. T h e pract ical r elev an ce is this problem
configuration is apparent in th e design and
operat ion of high - perform an ce gas centrifu ges [
e.g ., Sakurai & M at su da (1974)].

T h e findin g s of th e present tr eat ise are
summ arized for the case of a compressible
fluid . Ev en w h en th e ext ernal th ermal forcin g
at the w all is n on - axisymm etric, the fluid in
the int erior region m aint ain s ax isymmetric
t emperature dist r ibut ion s in th e parametric
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r an ge of ( - 1) M 2 O( E 1/ 3 ) . How ev er ,

w h en ( - 1) M 2 < O( E 1/ 3 ) , no

z- in depen dent solution can be obtained, an d a
fully z- dependent three dim en sional flow

result s . In th e case of ( - 1) M 2 O( E 1/ 3 ) ,
the interior fluid , by w ay of therm al diffu sion
proces s , approach es rigid - body rotat ion w ith it s
t emperature equ alized to the av erag e
t emperature at the w all. On th e other hand, the
n on - axisymm etric compon ent of th e therm al
forcing at the w all indu ces a closed circulation

in the E 1/ 3 - therm al lay er n ear th e w all.
Durin g this process , heat is g enerated
(rem ov ed ) by compres sion (or expan sion )
w ork w hich is cau sed by radial flow s . It is
ascert ain ed that th e impact of
n on - axisymm etric th erm al loadin g at the w all
is ab sorb ed w ithin this boundary lay er , an d the
t emperature in the int erior is subst antially
ax isymm etric.

2. Mathematical Formulation

T h e basic st at e den sity field is

00 ( r ) ex p [ M 2

2
( r 2 - 1)]. (1)

T h e lin earized gov erning N avier - Stok es
equ at ion s , expressed in the cylindrical fr am e

rotat ing at * , can b e w rit t en in
n on dim en sional form a s [e.g ., Sakurai &
M at su da , 1976; Bark et . al. ; Park & Hyun ,
2001]:

1
r r

( r 00 u) + 1
r

( 00 v) = 0 , (2)

- 2 00 v - M 2 r = - p
r

+ E [( 2 - 1
r 2 )u

+ ( 1
3

+ ) r
( u) - 2

r 2
v ], ( 3 )

2 00 u + 1
r

p = E [( 2 - 1
r 2 )v

+ 1
3r

u + 2
r 2

u ], (4)

- ( - 1) r 00 u = E 2 T , (5)

p = + 00 T . (6)

It is conv enient to deploy ^ to represent the
azimuthal- av erag ed v alu e of a dependent
v ariable, i.e.,

= 1
2 -

( r , , t)d .

F urtherm ore, ~ den otes the departure of

from ,

= ( r , , t) - .
In fact , abov e notation s ^ and ~ m ean
respect iv ely axisymm etric and
n on - axisymm etric compon ent s of the v ariable.

It follow s th at arbit r ary th ermal forcing at
the w all can be decomposed into
ax isymm etric and non - ax isymm etric part s :

f ( ) [ T ( r = 1, , t) ] = f +
n

f n e in ,

w h ere th e in dex n r efer s to th e n - th complex
F ourier coefficient

f n = 1
2 -

f ( ) e - i n d .

A ssociat e boundary con dit ion s are ex pressed
as :
(for th e axisymm etric part )

u ( r , t = 0) = v( r , t = 0) = T ( r , t = 0) = 0 ,

(7a )

an d u ( r = 1, t) = 0 , v( r = 1, t) = 0 ,

T ( r = 1, t) = f , (7b )

(for th e non - ax isymm etric part )

u ( r , , t = 0) = v( r , , t = 0) = T ( r , , t = 0) = 0,
(7c)

an d u ( r = 1, , t) = 0 , v( r = 1, , t) = 0 ,

T ( r = 1, , t) =
n

f n e in . (7d )

3. Analysis

3 .1 A x i s y m m etric p art
T h e v elocity and temperature fields in the

steady st at e, subj ect t o an axisymm etric

therm al forcin g , i.e., T w = f , are now

delin eat ed [see Eq.(7a )]. T he sub script w

den otes the pipe w all at r = 1 .0 . . By
imployin g th e av eraging process to th e
continuity equat ion (2), the axisymm etr ic radial
v elocity is

u s ( r) = 0 . (8)
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Sub st ituting Eq.(8) into azimuthally - av erag ed
equ at ion s of Eqs .(4) & (5) yields

v s ( r) = 0 , (9)

T s ( r) = f . (10)

In th e abov e, sub script s refer s to the st eady

F ig .1 Axisymm etric fields of den sity [top
fram e] and pressure [bottom fram e].

stat e. Obviou sly , th e ab ov e result s indicat e that
the st eady - st at e flow is in isoth ermal
rigid- body rotat ion .

T h e associat ed den sity an d pressure
fields can be found by un dergoin g alg ebraic
m anipulation s . F rom Eq.(6), one h as

p s ( r) = s ( r) + 00 ( r) f . (11)

Bringin g Eq.(11) into the ax isymm etric part of
Eq.(3) produces

d s

d r
- M 2 r s = - f

d 00

dr
. . (12)

T he solution to Eq.(12) is found to be

s ( r) = ( C 1 - f
2

M 2 r 2) 00 ( r) . (13)

T he int egration con stant C 1 is det ermin ed

by u sing the global m ass cont inuity , i.e.,
1

0
s 2 rdr = 0 : (14)

C 1 = f
2 ( M 2

1 - e - M 2 / 2 - 2). (15)

T h e pressure p s is obtain ed from Eq.(11)

:

p s ( r) = f
2

M 2 ( 1
1 - e - M 2 / 2 - r 2) 00 ( r) .(16)

T h e result s are show n in F ig .1.

3 .2 N on - ax i s y m m etric p art

F or E 1, to secure a m eanin gful asymptot ic
solut ion , the flow v ariables are ex pan ded as

=
n = 0

E n / m
n ( , ) ,

in w hich = ( 1 - r) / E 1/ m and denotes

u , v , , p or T . Upon sub stitut in g ab ov e
ex pan sion s int o n on - ax isymm etric part s of
g ov ernin g equat ion s (2)- (6), one can fin d a

ch oice of m = 3 and u 0 = p 0 = 0 . T h erefore,

the problem has a proper expan sion

param eter of E 1/ 3 an d the associat ed

boun dary lay er coordinat e as = ( 1 - r) / E 1/ 3 .
T he m eanin gful leading - order dependent
v ariables are scaled as

u s O( E 1/ 3 ) , v s O( 1) , T s O( 1) ,

s O( 1) , p s O( E 1/ 3 ) .

In th e abov e, t ilde refer s to a
n on - axisymm etric component and sub script s
the st eady solution . Abov e scalin g s are v ery

similar to E 1/ 3 - St ew art son lay er [ Bark &

Bark (1976)] an d to E 1/ 3 - therm al lay er
[M at suda & Nakag aw a (1983); W ood &
Babar sky (1992)].

T h e leading - order gov erning equation s for

T s and v s are

M 2 T s =
3 v s

3 , (17a )
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- ( - 1) v s =
3 T s

3 . (17b )

By elimin ating v from E qn s .(17a ) and (17b ),
the equ ation for temperature is obt ain ed :

6 T s
6 + ( - 1) M 2

2 T s
2 = 0 .. (18)

T h e appropriate boundary condit ion s for
Eq.(18) are :

at = 0 , T s =
n

f n e in , (19a )

2 T s
2 = 0 , (19b )

3 T s
3 = 0 , (19c)

an d, a s , all the v ariables t en d to zero.
Eq.(19a ) expresses the imposed therm al loading
at the w all, an d Eq.(19b ) st at es the
n on - perm eable condit ion at th e w all, i.e.,

u s = 0 leads to 2 T s / 2 = 0 , and

Eq.(19c) stat es the n o- slip con dit ion at th e

w all , i.e., v s = 0 leads to 3 T s / 3 = 0 .

In a m anner similar t o Sakurai and

M at su da (1974), the function T is expanded
as

T s ( , ) =
n

T n ( ) e in . (20)

By sub st ituting Eq.(20) into Eq.(18), the

solut ion T n ( ) , subj ect t o eqs .(19a )- (19c), is

acquired :

T n ( ) =
f n

2
[ e

- n

+ e
- 1

2 n 2
3

cos ( 3
2 n -

6 )], (21)

in w hich n = ( ( - 1) M 2 n 2 )
1/ 6

.

T h e radial an d azimuth al v elocit ies are
giv en :

u s ( , ) = -
( - 1) n

U n ( ) e in , (22)

v s ( , ) = -
( - 1) n

V n ( ) e i( n - / 2 ) ,(23)

in w hich

U n ( ) =
f n

2
2
n [ e

- n

+ 2
3

e
- n / 2

s in ( 3
2 n -

3 )],

V n ( ) = -
f n

2n
3
n [ e

- n

+ 2
3

e
- n / 2

s in ( 3
2 n - 2

3 )].

T h e primary role of the th ermal lay er is t o
adju st the int erior flow sm oothly to the
condition s imposed at th e w all. It is , th erefore,
sufficient to carry out only the leadin g - order
an aly sis at this st ag e.

F ig .2 P lot s of h arm onic compon ent s for
n on - axisymm etr ic temperature fields (top
fram e) and stream funct ion (bot tom frame ).

(A ), n =1; (B ), n =2. M = 1 .0 , = 1 .4 and

= 0 .7 . = 0 .3 .

T h e abov e theoret ical dev elopment s offer
succint phy sical interpretation s . A s sh ow n in

Eq.(18), w hen ( - 1) M 2 O( E 1/ 3 ) , the
effect of non - ax isymm etric therm al forcin g at
the w all is ab sorb ed in the th erm al lay er of

thickn ess O( E 1/ 3 ) adj acent to the w all.
In side the th ermal lay er , th e fluid near the
w all w here the therm al forcing is positiv e, i.e .,
in the azimuthal w all sector un der h eat in g ,
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undergoes therm al ex pan sion . T his cau ses
radially - inw ard flow s [see eq.(22)]. In contrast ,
in the azimuthal w all sector un der cooling , the
fluid un derg oes th erm al compression , w hich
g enerates radially - outw ard flow s . In respon se
to th e n on - axisymm etric th ermal con dition at
the w all, i.e ., w h en the azimuth al w all sector s
under heat in g an d coolin g ex ist , th e result in g
radially - inw ard and n eighborin g
radially - outw ard flow s indu ce azimuth al flow s

alon g th e w all w ithin this O( E 1/ 3 ) - lay er [see
eqs .(22) & (23)]. T his is clear from the
con siderat ion of the continuity equ ation . [see
F ig .2]

T h e ov erall picture in side this th ermal lay er
is that , in the imm ediat e vicinity of th e w all,
azimuthal flow s are g en erated from a cool to a
h ot w all sector ; in the far region aw ay from
the w all, azimuthal flow s are in the opposit e
direction . T hese intern al flow s in side the lay er
create a closed circulation . In this proces s , the
fluid ex perien ces diffu siv e heat ing (coolin g )
from th e h ot (cold ) sector of th e w all.
Simultan eou sly , the radially - inw ard
(outw ard )- moving fluid at hot (cold ) sector is
cooled (heat ed ) by w ay of w ork don e by th e

ba sic pressure v ariat ion , i.e., ( - 1) u s <0

( ( - 1) u s >0 ), w hich is easily confirm ed

from th e energy equ ation (5). T his aspect is
ab sent in the case of an incompressible fluid.
F or an in compres sible fluid , the temperature
field is gov erned by the simplistic diffu sion
equ at ion . T h erefore, a t emperature disturban ce
at th e w all is n ot confined to w ithin the

O( E 1/ 3 ) boun dary lay er ; th e entir e flow
dom ain is directly influ en ced by th e therm al
boun dary condition at the w all. T his qualit at iv e
difference betw een compressible and
incompressible flow s w a s emphasized earlier
by M at su da et al. (1976).

In the present discu ssion for a
rapidly - rotat in g compres sible fluid, under

( - 1) M 2 O( E 1/ 3 ) , the essent ial
dynamical elem ent is th e g en eration of radial

m otion s of O( E 1/ 3 ) due to the imposition of
n on - axisymm etric therm al forcing at the w all

[Rem ember that u s O( E 1/ 3 ) ]. T he

radially - inw ard (outw ard) m otion cau ses
v olum e ex pan sion (compression ) of the fluid
elem ent ow ing to the basic- st at e b ackgroun d
pressure distr ibution , w hich result s in cooling
(heat ing ) of th e fluid . It is n ot ed th at th e
direct conductiv e heating (coolin g ) from the h ot
(cold ) sector of th e w all is offset by th e
coolin g (heating ) du e to the afore- said radial
m otion s . Con sequ ently , it is pos sible that the
effect of non - ax isymm etric therm al forcin g at

the w all is r estr ict ed to w ithin the E 1/ 3

- therm al lay er , r ather than propagat in g to the

ent ir e flow domain approaching r 0 .
In the case of differential heat in g of th e pipe

w ith highly condu cting w all, ex emplary
schem atics for abov e description s are sh ow n in
the follow in g F ig s .3- 5.

F ig .3 Problem definition of the different ial
h eat in g problem .

F ig .4 Sch em atics of flow geom ery for th e
different ial- heating problem .
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F ig .5 Schem atics of isotherm al lines in the
ca se of (A ), compressible fluid and (B ),
incompressible fluid .

4. Conclusions

T h e axisymm etric part of the therm al forcing
at th e w all giv es rise to the int erior
t emperature , w hich is equ alized to the av erage

v alu e, T w , of th e temperature distr ibut ion at

the w all. T he att en dant flow in the interior is
in rigid - body rot at ion , rot ating together w ith
the pipe . In comparison w ith th e original
ba sic - state, the den sity increa ses (decreases ) in
the int erior region surrounding the axis for

T w >0 ( T w <0 ). Near the w all, den sity

decreases (increa ses ) for T w >0 ( T w <0 ).

T he pressure increa ses (decreases ) in th e

ent ir e dom ain for T w >0 ( T w <0 ).

Du e to a z- in depen dent non - ax isym m etric
therm al forcin g at the w all, in the param eter

ran ge ( - 1) M 2 < O( E 1/ 3 ) , it is n ot

possible to hav e a z- independent

t w o- dim en sion al flow on th e ( r , ) plan e.
In the param eter rang e

( - 1) M 2 O( E 1/ 3 ) , forcin g at th e w all is

ab sorbed in th e E 1/ 3 - therm al lay er close to

the w all. In th e E 1/ 3 - lay er , r egion s of
n on - equal temperatures , deviat in g from the

av erage v alu e T w , ar e form ed due to th ermal

diffu sion from th e w all. T he accompanying
azimuthally - v arying den sity field giv es rise to
a closed circulation , w hich is in accord w ith
therm al geostrophic w ind relat ion .
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