충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석

김범준[†] · 김범준^{*} · 임윤철^{**}

Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision

Bum-Joon Kim, Yoon-Chul Rhim

Key Words: Collision(충돌), dynamic L/UL(다이나믹 L/UL), numerical simulation(수치 해석), rotating speed(회전속도), skew angle

Abstract

Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

	기ㅎ석명	
m	슬라이더의 질량	
Ip	슬라이더의 질량관성 모멘트(Pitch)	
I _r	슬라이더의 질량관성 모멘트(Roll)	
Cz	Load Beam 의 댐핑 계수	
Cp	Flexure 의 댐핑 계수(Pitch)	
Cr	Flexure 의 댐핑 계수(Roll)	
Kz	Load Beam 의 강성 계수	
K _p	Flexure 의 강성 계수(Pitch)	
K _r	Flexure 의 강성 계수(Roll)	
g	중력 가속도	
р	Air bearing 압력	
p_a	대기압력	
h	슬라이더와 디스크 사이의 간극	
\mathbf{h}_{\min}	슬라이더와 디스크 사이의 최소 간극	
Q	유량 계수	
μ	공기의 점도	
U	디스크의 x 방향 속도	
⁺*연세대학교 대학원 기계공학과		
E-mail : junpower@yonsei.ac.kr		
TE ** 여 네 미	L : (02)2123-2820 하고 기계고하고	
끈세네	ㅋㅛ ////ㅇㅋ색	

V	디스크의 y 방향 속도
n	충돌면의 법선 벡터
Va	접근 속도
Vs	분리 속도
е	반발 계수

1. 서 론

1.1 연구 배경 및 목적

다이나믹 L/UL 기술은 주로 휴대용 드라이브나 리무버블(Removable)드라이브등과 같은 정보저장 기기에 적용되어 왔으며 디스크 드라이브 산업계 에서 데스크탑(Desktop)과 서버용 드라이브(server drives)에 적용하여 기술 발전이 지속되었다.

L/UL 시스템은 디스크의 공간을 최대한 활용하 고 정보를 읽고 쓰지 않는 동안에는 디스크 밖으 로 슬라이더가 이동함으로써 불필요한 동력 손실 을 줄일 수 있는 장점이 있다. 그러나 Loading/ Unloading 시에 디스크 면과의 충돌(Collision)이 발 생하여 고착(Stiction)을 유발하거나 Air bearing 효 과를 저하시키게 된다.

이에 따른 L/UL 용 슬라이더의 설계 목적은 로 당시의 충돌을 고려하여 디스크의 손상을 입히지 않는 범위에서 단시간에 요구되는 FH(Flying height)에 도달하도록 안정된 시스템을 구축하는 것이다. L/UL 시스템은 많은 파라미터들이 성능에 영향을 미치는데 Loading/Unloading 시 슬라이더를 유도하는 Ramp 의 형상과 ABS 의 형상, 회전수, 로딩 속도, 슬라이더에 가해지는 딤플 로드 등이 해당된다. 본 논문에서는 ABS Simulation Code 를 이용하여 다이나믹 L/UL 시스템의 성능을 예측하 고 로딩시 발생할 수 있는 충돌을 줄이기 위한 파 라미터를 제시하고자 한다.

1.2 관련 연구 동향

Jeong, Bogy(2)는 Slider-Disk contact 을 피하기 위 한 조건을 찾기 위해 실험을 통해 L/UL system 을 연구하였고, Ponnaganti, Kane(5)은 슬라이더의 6 자 유도 해석을 통해 Collision 영역에서의 Slip Contact 와 No-Slip Contact 거동을 예측하였다.

Yamada, Bogy(3)는 서스펜션의 중앙부분을 들어 올리는 Horizontal Bar 를 이용하여 L/UL Mechanism 을 규명하였다.

2. 수치 해석

2.1 L/UL 시스템의 개요

본 연구에 사용된 Simulation model 은 Fig. 1 에 나와있다.

Fig. 1 Assembly of Dynamic Ramp L/UL System

Fig. 2 Simplified suspension model

CSS(Contact-Start-Stop) 타입과 달리 Ramp L/UL 은 비작동시 슬라이더가 디스크의 외부의 Detent Position 에 고정되어 있다가 기기 작동시 디스크가 회전하면서 VCM 의 회전에 의해 슬라이더가 Ramp를 따라 디스크에 도달하게 된다.

이러한 과정을 시뮬레이션 하기 위해서 모델을 단순화 할 필요가 있다. Figure 2 는 단순화 된 슬 라이더와 서스펜션을 나타낸다. 슬라이더는 Gimbal 및 Flexure 에 의해 Pitch, Roll 거동이 구속 되며, Load beam 에 의해 중력방향으로의 Pre-Load 를 받는다.

2.2 지배 방정식

서스펜션의 지배방정식은 다음과 같다. 이때 식 (1)은 Load beam 의 영향을 받고, 식 (2), (3)은 Flexure 에 의해 구속된다.

$$m\frac{d^2z}{dt^2} + c_z\frac{dz}{dt} + k_z z + mg = \iint_A (p - p_a)dA \quad (1)$$

$$I_p \frac{d^2 \theta_p}{dt^2} + c_p \frac{d \theta_p}{dt} + k_p \theta_p + M_p = \iint_A (p - p_a) x dA \quad (2)$$

$$I_r \frac{d^2 \theta_r}{dt^2} + c_r \frac{d \theta_r}{dt} + k_r \theta_r + M_r = \iint_A (p - p_a) y dA \quad (3)$$

슬라이더에 가해지는 pre-load 는 서스펜션의 평 형상태에서의 높이와 Loading 시의 초기 높이와의 차에 의해 결정된다.

슬라이더가 램프를 따라 Loading 이 되면서 슬 라이더의 밑면에서 Air bearing 효과에 의해 압력이 상승되어 슬라이더를 떠받치는 힘이 작용하게 된 다. 이는 수정 레이놀즈 식을 적용하여 구할 수 있다.

$$\frac{\partial}{\partial x} \left(ph^3 Q \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(ph^3 Q \frac{\partial p}{\partial y} \right) = 6\mu U \frac{\partial ph}{\partial x} + 6\mu V \frac{\partial ph}{\partial y} + 12 \frac{\partial ph}{\partial t} \quad (4)$$

이름 무차위화 하면

$$\frac{\partial}{\partial X} \left(PH^{3}Q \frac{\partial P}{\partial X} \right) + \lambda^{2} \frac{\partial}{\partial Y} \left(PH^{3}Q \frac{\partial P}{\partial Y} \right) = \Lambda_{X} \frac{\partial PH}{\partial X} + \Lambda_{Y} \frac{\partial PH}{\partial Y} + \sigma \frac{\partial PH}{\partial T}$$
(5)

로 나타낼 수 있다. 위 식에서 Λ와σ는 각각 베 어링 넘버와 스퀴즈넘버를 뜻한다.

식 (5)는 세 부분으로 나누어 해석할 필요가 있 다. 첫째, 식의 좌변에 있는 Flow factor 는 간극이 미크론단위 이하로 내려가면서 공기의 평균 유효 거리와 간극이 비슷한 크기의 값을 갖게 되며 이 때 No-slip condition 을 적용하기 어려워진다. Fukui, Kaneko 는 이를 위해 선형화된 볼츠만 식을 이용 하여 매우 작은 간극에서의 수정 레이놀즈 식을 얻을 수 있는데 Knudsen number 가 0.01 보다 커질 때 Slip condition 을 적용할 수 있다. 두 번째의 경 우는 Knudsen number 가 0.01 이하로 내려갈 때, 즉 간극이 공기의 평균 유효 거리보다 매우 클 때 Q 의 값은 1에 근접하여 No-Slip condition 을 적용하 여 Continuum flow 로 해석하게 된다. 세 번째는 수치 해석상 간극이 sub- nanometer 로 작아지면 베 어링 넘버는 무한대로 커지게 되어 수렴하기 어려 워진다. 이때 슬라이더내의 압력이 유한한 값을 갖기 위해서는 <u>*∂PH*</u> <u>*∂PH*</u> 가 0 이 되어야 한다. 슬 ∂X ∂T 라이더는 infinite-wide-bearing 으로 가정할 수 있고 Air bearing 에 의한 Load 는 시간과 속도에 관계없

이 일정한 값이 된다. 이때 *PH* ≈ *p_a* ⋅ *h_{min}* 과 같다. 또한 곡률반경이 작은 지점에서의 해석 결과에 대한 신뢰도를 높이기 위해 슬라이더 밑면의 디스 크 곡률을 적용하여 FEM 해석 시 각각의 Nodal Point 에서의 디스크 속도를 계산하여 각기 다른 Λ_x, Λ_y를 적용하여 해석을 수행하였다.

L/UL 시스템에서는 슬라이더가 Ramp 를 따라 디스크로 진입할 때의 초기 높이가 정상 상태에 비해 매우 높기 때문에 떨어질 때 Air bearing 에 의한 반력이 작용해도 초기 높이에서 가속된 슬라 이더의 하중을 받쳐주지 못하고 디스크와의 충돌 이 발생하게 된다. 이때의 충돌된 시간동안의 Impact-Momentum 식을 이용하여 Δ*t* 후의 슬라이 더의 속도를 구할 수 있다. 충돌 후의 속도는 HGA (Head-Gimbal-Assembly) 와 디스크와의 반발 계수 및 정지마찰계수, 운동마찰계수, 그리고 디스 크와의 상대속도에 의해 구할 수 있다.

 $n \cdot v_s = -e \, n \cdot v_A \tag{5}$

t₁ 과 t₂ 사이에서 충돌이 발생되었을 때 임펄스 (Impulse)를 R 이라 하고, K 를 슬라이더의 운동에 너지(Kinetic Energy)라 놓으면 Impulse-Momentum 식은 다음과 같다.

$$\left[\frac{\partial K}{\partial u_r}\right]_{t_2} - \left[\frac{\partial K}{\partial u_r}\right]_{t_1} = \frac{\partial V}{\partial u_r} \cdot \int_{t_1}^{t_2} Rdt \qquad (6)$$

이때 u_r(r=1,...,6)은 6 자유도에 대한 속도를 의미 한다. 만일 슬라이더와 디스크면 사이에 Slip 이 일어나지 않았다면 t₂에서

$$\eta \times (V_s \times \eta) = 0 \tag{7}$$

$$\left| \tau \cdot \int_{t_1}^{t_2} Rdt \right| < \mu_s \left| \eta \cdot \int_{t_1}^{t_2} Rdt \right| \tag{8}$$

로 나타내어 지며 μ_s는 정지마찰 계수를 나타내 고 τ와η는 각각 슬라이더의 접선벡터와 법선 벡 터를 나타낸다. 반대로 식 (6)이 성립되지 않았을 때 Slip 이 일어난 것으로 간주하여 식은 다음과 같이 나타내어 진다.

$$\left[\tau \cdot \int_{t_1}^{t_2} Rdt\right] \cdot \tau = -\mu_k \left|\eta \cdot \int_{t_1}^{t_2} Rdt\right| \cdot \frac{\eta \times (V_s \times \eta)}{\left|\eta \times (V_s \times \eta)\right|} \quad (9)$$

μ_k는 운동마찰 계수를 나타내며 식(5)~(8) 이나 식(5), (6)과 (9)를 연계하여 충돌 후의 속도를 계산 할 수 있다. Dynamic 식은 3 자유도를 갖는 해석인 데 반해 Impulse-Momentum 식은 6 자유도를 갖는 다. 이것은 낙하 과정에서 슬라이더의 거동은 간 극방향인 Z 방향과 Pitch, Roll 방향으로의 거동을 제외하고는 다른 방향으로의 모션(Motion)은 무시 할 수 있지만, 충돌이 발생하였을 때 비교적 강한 힘이 짧은 시간에 작용하기 때문에 X, Y 방향과 Yaw 방향의 모션이 나머지 세 방향의 모션과 함 께 Couple 되어 해석해야 한다. 그러나 Δt 이후의 슬라이더의 해석에서 Z, Pitch, Roll 방향을 제외한 다른 세 방향의 속도는 0으로 가정한다.

 Table 1 Characteristics of Pico slider

	SIZE	MASS	Pre-	Coefficient of
	(mm)	(mg)	load	restitution
			(mN)	
Pico	1.25×1×0.3	3	12.5	0.8
Slider				

2.3 수치 해석 결과

시뮬레이션에서 Pico 슬라이더가 적용되었다. 슬 라이더의 특성은 Table 1 과 같다. Figure 3 은 슬라 이더의 형상을 나타내는데 슬라이더의 깊이 (Recess)는 2.5µm이며 FH 를 낮추기 위해 음압 슬 라이더의 형태가 적용되었다. Leading Edge 에서 상 승된 압력이 바로 뒤편의 Recess 에 의해 압력강하 가 일어나도록 설계되었고 음압 슬라이더의 장점 은 강성과 댐핑 효과가 뛰어나지만, 반대로 Unloading 시에 음압에 의해 슬라이더와 서스펜션 이 분리되어 심한 진동을 유발시켜 Contact 을 유 발하는 단점을 지니고 있다.

서스펜션의 강성계수 및 Pitch, Roll 의 댐핑 계수 는 각각 10N/m, 0.1Ns/m, 0.3Ns/m 로 설정하였다. 또한 실제 L/UL System 에 사용되는 파라미터를 적용하여 계산을 수행하였는데, Ramp profile, 초기 Skew 각도, 초기 높이는 각각 20°, 10.27°, 20µm 이다. 덤플 위치는 Leading Edge 로부터 60% 지점 에 위치하며, 슬라이더와 디스크 사이의 정지 마 찰력과 운동 마찰력을 각각 0.25, 0.2 로 적용하였 다. 수직방향의 초기속도는 램프의 형상과 VCM 의 회전 각속도에 의해 결정된다. 본 연구에서는 VCM 의 회전 각속도를 1rad/s 로 적용하여 수직방 향 초기 속도는 38.5mm/s 이다.

Figure 4 는 FEM 해석에 적용된 슬라이더의 메 쉬 형상을 보여준다. ABS 형상은 비선형 성향을 보이므로 압력구배가 크게 나타날 것으로 예상되 는 지점에 요소를 집중 시켜 해석을 수행하였다.

디스크의 Roughness 는 peak-to-valley 12nm 로 설 정하였다.슬라이더의 Loading 위치는 디스크 중심 으로부터 30mm 지점이며, skew 는 -10.2°이다.

Fig. 3 Scheme of the geometry of Pico slider

Fig. 4 Mesh of negative pressure Pico slider

L/UL System 에서 회전수, Pre-Skew 각도에 따른 거동을 수치 해석을 통해 시뮬레이션을 수행하였 다. Figure 5 는 해석을 통해 얻어진 정상상태의 압 력분포를 나타낸다. FH(Flying height)는 약 25nm 이 며 Pitching angle 과 Rolling angle 은 각각 -40urad, 4.6urad 으로 나타났다. 이때 Air bearing 에 의한 힘 은 약 22mN 로 나타났다.

정상상태의 결과를 바탕으로 회전수, Pre-Skew 각도를 달리하여 해석을 수행하였다. 이때 Standard 형의 Pre-skew 각도가 0°일 때 -10.2°의 Skew 각을 갖기 때문에 두 번의 해석을 통하여 각 각 -10.2°, 0.2°, 10.2°의 Skew 각도변화에 따른 거 동을 비교하였다.

Table 2 variables for simulation

	RPM	Pre-Skew(deg.)
Standard	3200	0.0
TEST 1	7200	0.0
TEST 2	3200	10.0
TEST 3	3200	20.0

Fig. 5 Pressure distribution normalized to ambient

Fig. 6 Characteristics of Standard model during the loading process

Standard Type 은 실제 모델의 파라미터를 적용하 여 해석을 수행하였다. Figure 6 은 Standard model 에서의 FH, Load, Pitch, Roll 의 결과를 나타낸다.

회전속도가 낮을수록 Loading 시에 반발된 높이 가 높아지는 것을 볼 수 있는데 이것은 충돌 직전 의 Air bearing 에 의한 힘이 커져서 충돌후의 높이 를 상승시키는 역할을 하는 것으로 해석할 수 있 다.

Skew 각도가 커질수록 반발된 높이의 변화가 크 게 달라짐을 볼 수 있다.

Fig. 7 FH during the loading process for several

Fig. 8 Pitch and Roll changes during the loading process

Fig. 9 Load of Air bearing during loading process

Fig. 10 Collision location

Figure 10 에서 y 축의 1~4 의 숫자는 슬라이더의 접촉 위치를 뜻한다. Leading edge(OD)-1, (ID)-2 와 Tailing edge(OD)-3, (ID)-4 를 가리킨다. 충돌 발생 빈도는 회전속도가 낮을수록 적어지고, Pre-Skew 각도가 20°일 때 발생위치가 늦춰지며 그 빈도가 적어지는 것을 확인 할 수 있었다. 또한 이때 Leading edge 에서의 충돌이 일어나지 않았다.

3. 결론

Pico 슬라이더의 과도 현상을 FEM 을 이용한 시뮬레이션 프로그램을 통해 해석하였다.

본 연구를 통해서 Pico 음압 슬라이더에 대한 정상상태에서의 압력 분포 및 Air bearing 효과에 의한 Load 를 계산하였고 디스크의 회전수, Pre-Skew 각도, Loading 속도에 따른 슬라이더의 거동 을 비교하였다. L/UL 시스템에서 사용되는 음압 Pico 슬라이더의 연구를 통해 Loading 시 레이놀즈 식에서의 스퀴즈 효과에 의한 압력 상승이 크더라 도 서스펜션의 강성에 의해 충돌을 초래한다는 것 을 알 수 있었다. 이러한 충돌 빈도를 낮추기 위 해서는 Load 시에 회전속도가 낮아져야 한다. 또 한 Pre-Skew 각도를 주어 슬라이더가 약 10°정도 의 Skew 각도를 유지할 때 충돌 횟수를 줄일 수 있다. 이때 슬라이더의 Leading edge 부근에서의 충돌을 피함으로써 FH 를 찾아가기 위한 압력생성 을 유지시킬 수 있다. 참고문헌

- Qing-Hua Zeng and David B. Bogy, 2000, "Effects of Certain Design Parameters on Load/Unload Performance," IEEE Transactions on Magnetics, Vol. 36, No. 1, pp. 140~147
- (2) T.G. Jeong and D.B. Bogy, 1990, "Slider-Disk Interactions During The Load-Unload Process," IEEE Transactions on Magnetics, Vol. 26, No. 5, pp. 2490~2492
- (3) T. Yamada and D.B. Bogy, 1988, "LOAD-UNLOAD SLIDER DYNAMICS IN MAGNETIC DISK DRIVES," IEEE Transactions on magnetics, Vol. 24, No. 6, pp. 2742~2744
- (4) S. Fukui and R. Kaneko, 1988, "Analysis of Flying Characteristics of Magnetic Heads With Ultra-Thin Spacings Based On The Boltzmann Equation," IEEE Transactions on Magnetics, Vol. 24, No. 6, pp. 2751~2753
- (5) S. Fukui and R. Kaneko, 1990, "A Database for interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems," ASME Journal of Tribology, Vol. 112, pp. 78~83
- (6) V. Ponnaganti, T. R. Kane, and J. W. White, 1987, "Dynamics of Head-Disk Contact/Impact in magnetic recording," IEEE Transactions on Magnetics, Vol. 23, No. 5, pp. 3435~3437
- (7) Kane, Thomas R., 1985, Dynamics : Theory and Applications, McGraw-Hill, pp. 231~241