
1. Introduction

When two large conductors make perfect electrical
contact over a small circular area of radius a, there
will be a constriction resistance to electrical flow
between them of ρ/2a , where ρ is the electrical
resistivity. This equation is widely used in the
design and study of electrical contacts. However, if
the contacting bodies have rough surfaces, contact
will rarely be restricted to a single area. Instead,
there will be contact at a multitude of microscopic
`actual' contacts clustered within a macroscopic
`nominal' or `apparent' contact area. Greenwood(1)
has analyzed such clusters, treating a number of
distributions of size and spacings, and has
confirmed an earlier suggestion by Holm(2) that the
combined effect of the local constriction and the
clustering is to generate a resistance

R = ρ (
1
2Na

+
1
2α

) (1)

where N is the number of circular contact spots

and α is the radius of the cluster.
Many authors have attempted to generalize

Greenwood's results to define the electrical and
thermal conductance in the presence of clusters of
microcontacts. Contact resistance has been
computed numerically by Nakamura(3) for a system
of two cubic electrodes contacting through a set of
square contact spots, whilst Boyer(4) has extended
the Greenwood formula to include the presence of
interfacial films by considering the rectangular
juxtaposition of square spots of equal size and
square ring-shaped spots.

Eq. (1) provides a good approximation to the
electrical contact resistance for a deterministic
distribution of contact spots of known size and
location, but information about the distribution of
asperities is most likely to be statistical in nature,
since surface roughness is essentially a random
process. Furthermore, surface roughness descriptions
are typically multiscale in nature and on a
sufficiently fine scale, the number of discrete
contact spots is likely to be too large to permit an
efficient deterministic calculation. In the present
paper, we shall develop a statistical version of
Greenwood's equation, in which the summation is
replaced by an integral over the nominal contact
area with a kernel that depends on the statistical
properties of the distribution. We shall then test the
predictions of the theory by comparison with a
discrete deterministic realization developed using the
random mid-point displacement algorithm. In
particular,

Effect of Contact Statistics on Electrical Contact Resistance

YongHoon Jang

Key Words: 전기접촉저항 미소접촉분포Electrical contact resistance( ), Microcontact distribution( ),
멀티스케일해석 프랙탈 표면Multiscale analysis( ), Fractal surface( )

Abstract

The flow of electrical current through a microscopic actual contact spot between two conductors is
influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect is
developed and used to predict the contact resistance when the statistical size and spatial distribution of
contact spots is known. To illustrate the use of the method, an idealized fractal rough surface is
defined using the random midpoint displacement algorithm and the size distribution of contact spots is
assumed to be given by the intersection of this surface with a constant height plane. With these
assumptions, it is shown that including finer scale detail in the fractal surface, equivalent to reducing
the sampling length in the measurement of the surface, causes the predicted resistance to approach the
perfect contact limit.

†연세대학교 공과대학 기계공학부
E-mail : jyh@yonsei.ac.kr
TEL : (02)2123-5812 FAX : (02)312-2159

대한기계학회 2003년도 추계학술대회 논문집

 1080



we shall investigate the effect on the predicted
contact resistance of the sampling length on the
model surface, using recent results due to Jang(5)
for relations between two and three-dimensional
properties of random surfaces.

2. Statistical Implementation of
Greenwood's equation

Greenwood's result is based on the
approximation of the potential field due to current
flow through a microscopic contact spot by that
due to a point current source in all locations other
than the immediate vicinity of the contact spot.
Thus, the potential φj at the j-th contact spot in a
set of N randomly disposed contact spots as shown
in Fig. 1 is

φj =
ρIj

4aj
+

ρ
2π Σi≠ j  

Ii

sij
(2)

where Ii is the current through the i-th contact
spot, ai is its radius, sij is the distance from
between the centers of the i-th and j-th contact
spots and the summation is performed over all the
N contact spots except i = j .

Fig. 1 Configuration of contact

2.1 The base potential
We will define the base potential φj through the
relation (2)

 φj≡ φj −
ρIj

4aj
=

ρ
2πΣi≠ j

Ii

sij
. (3)

With this notation, we have

Ij =
4aj

ρ
(φj − φj ) (4)

and using this result to substitute for Ii in Eq. (3),
we obtain

 φj =
2
πΣi≠ j

ai (φi − φi )

sij
. (5)

2.2 Integral form of the equation
Suppose that in some nominal area A, there exists
a single circular contact spot and that the
probability of its radius being between a and
a+  a and of its center being located in the
rectangle defined by the lines x, x+ x, y, y+ y
is h (x, y, a ) x y a where h(x,y,a) is a probability
distribution function which satisfies the equation

A
[
0

∞
h (x, y, a )da ] dxdy = 1 . (6)

A similar definition can be used for the case where
there are n contact spots per unit nominal area, in
which case the probability of a contact spot of
radius a+  a having its center within the
infinitesimal rectangle will be
nAh (x, y, a )dadxdy. This definition implicitly
assumes that the distribution is uncorrelated - i.e.,
that the probability of a contact spot at (x,y) is
unaffected by the actual occurrence of a contact
spot at a nearby point. The consequences of this
assumption will be discussed in Section 7.

The base potential at the point x,y due to the
distribution h(x,y,a) can now be written

φ(x,y)=
A 0

∞2nAh(ξ,η,a)(φ(ξ,η)−φ(ξ,η)adadξdη 

π
√
(x−ξ)2+(y−η)2

 

(7)
where the domain of integration is the nominal
contact area and the range of contact spot radii.

If the integral with respect to a can be
performed, defining the new function

h (ξ, η)≡
0

∞
nAh (ξ, η, a )ada (8)

then

φ(x,y)=
A

2h(ξ,η)(φ(ξ,η)−φ(ξ,η)dξdη 

π
√
(x−ξ)2+(y−η)2

 (9)

2.3 The Boundary Value Problem

If two half spaces make electrical contact at a
number of areas on their common plane surface,
the potential problems in the two bodies will be
geometrically similar and the actual contact areas
will form an equipotential surface. In particular, the
potential difference between this surface and the
extremity of body i (i=1,2) will be

φ =
Uρi

ρ1 + ρ2
, (10)

where ρi denotes the resistivity of the material of
body i and U is the potential difference between
the extremities of the two bodies. In more general
problems, φ may not be constant. For example, if
one of the bodies conducts a current in a direction
tangential to the common interface, φ will be a
linear function of ξ, η. .

Thus, φ (ξ, η) is a known function, as is
h (ξ, η, a ) , and hence we can determine the
function

f (x, y )≡
A

2h (ξ, η)φ (ξ, η)dξdη 

π
√
(x − ξ )2 + (y− η)2

 (11)

It follows that the base potential φ is the
solution of
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A

2h (ξ, η)φ (ξ, η)dξdη 

π
√
(x− ξ )2 + (y− η)2

+  φ (x, y ) =  f (x, y) 

(12)
which is a singular integral equation of the second
kind, for which various solution methods are
available.

Once φ (x, y) has been determined from this
equation, the current through each individual contact
spot is defined in the discrete formulation of Eq.
(4) so that the current through all contact spots can
be summed as

I≡ Σ
j= 1

N

Ij = Σ
j= 1

N 4aj

ρ
(φj − φj ). (13)

The integral form of this equation can be written
as

I=
4
ρ A 0

∞
nAh(ξ,η,a)(φ(ξ,η)−φ (ξ,η))adadξdη

        =
4
ρ A

h(ξ,η)(φ(ξ,η)−φ(ξ,η))dξdη

(14)
We can also define the local mean current density
as

i (x, y) =
4
ρ

h (x, y)(φ (x, y)− φ (x, y)) (16)

Notice that i(x,y) is averaged over the local
discontinuities associated with the actual contact
areas, but it will vary over the nominal contact
area. Statistically, it can also be regarded as the
expected value of current density at the point (x,y).

3. Interpretation of the Function h (ξ, η )

Suppose that the spatial distribution of contact spots
and the size distribution are uncorrelated, so that
h (ξ, η, a ) can be written in the normalized
separated variable form

h (ξ, η, a ) = h1 (ξ, η)h2 (a ) (17)
where

  

 

 
 A 

 

 h1 (ξ, η)dξdη =  1 ;        
0

∞
h2 (a )da =  1  (18)

We then have

h(ξ,η) =  nAh1(ξ,η)    
0

∞
h2(a)ada  =  nAh1(ξ,η)a (19)

from Eq. (12), where a is the mean value of a. If
the distribution function h1 (ξ, η) is uniform in A,
we have

h1 (ξ, η ) =  
1
A

(20)

from (18) and hence
h (ξ, η ) =  na . (21)

More generally, the function h (ξ , η ) is equal

to the product of the number of contact spots per
unit area and the mean radius, both of which may
be functions of position.

4. Microcontact spot distribution

Eqs. (10, 12, 15) permit us to determine the
electrical contact resistance

Re =  
U
I

(22)

for any rough surface contact problem, provided we
can determine the corresponding statistical
distribution functions h1 (ξ, η)and h2 (a ) . Various
methods exist for this purpose.
For example, we might use an asperity model
theory suchas those due to Greenwood and
Williamson(6) for flat surfaces orGreenwood and
Tripp(7) for non-conforming surfaces.
In the present paper, we shall illustrate the

method by making the assumption that the
distribution of contact spots is defined by the set
of `islands' generated by cutting through the rough
surface at constant height. This assumption was
used by Majumdar and Bhushan(8) in their fractal
theory of contact and is related to the concept of
`bearing area' which is arguably appropriate when
the contact deformations are predominantly plastic.

For this purpose, we generated a randomly
rough surface using the random midpoint
displacement algorithm(RMD) (Voss(9)). Suppose the
values of the process are defined at the nodal
points of a square grid. The grid is now
sub-divided by introducing new nodal points at the
mid points. The value of the process at each
mid-point is determined as the sum of the average
of the two adjacent end points and a zero mean
random process with a Gaussian distribution. This
procedure of subdivision is applied recursively and
the standard deviation of the random process at
each scale is chosen so as to ensure that the
algorithm generates a self-affine fractal surface.

Starting with a square of dimension LxL, m
applications of the algorithm will generate a square
grid of (2m+ 1 ) (2m+ 1 ) , corresponding to a
fractal surface measured with a sampling length of
L/2m.

Figure 2(a) shows a typical rough surface
generated by this algorithm in the unit square and
Fig. 2(b) shows the corresponding bearing area ratio
B(z). The bearing area ratio is defined as the
proportion of the surface above the height z. The
z-axis in these figures is normalized with respect to
the standard deviation σ (i.e. the RMS roughness)
of the resulting surface.

Figure 2(c) shows the contact spots defined
by cutting through the surface at the level where
the bearing area ratio is 5% (i.e. B(z)=0.05), with a
grid size (sampling length) of 1/27. A total of 27
contact spots are identified, but they are clearly not
circular, as required by the analysis of section II.
A distribution function for `equivalent' contact radii
might be obtained by defining a set of circles
whose areas are equal to that of the islands in Fig.
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Fig. 2 Rough surface generated by the RMD
algorithm. (a)three-dimensional view; (b) the
corresponding bearing area ratio B(z); (c) the set of
islands generated by cutting through the
surface at B(z)=0.05.

2(c). However, we note that in most cases, the
complete topographical description implied in Fig.
2(a) is not available. Instead, we typically have
profilometer output, which is equivalent to a
sampling of the surface along one or more lines.
This permits the bearing area ratio (Fig. 2(b)) to be
determined, but information about the distribution of
islands h2 (a ) must be deduced from the
corresponding distribution of line segments f(l)
above a given height in the profile. Jang(5) has
shown that a distribution h2 (a ) of circular contact
spots will lead to a distribution f(l) of line
segments above the specified height, where

h2 (a ) =  −
2a
π

d
da a

∞ f (l )√
l 2− a 2

dl . (23)

and the mean radius of the circles is

a = π 2
0

∞ f (l )
l

dl . (24)

The number of contact spots $n$ per unit area is

n =
2nc

a
, (25)

where nc is the number of the line segments per
unit length(5).
To utilize the above equations, we first sample

the model surface along a set of lines to measure
the number of line segments per unit length nc

above a given height z and the length distribution
of these line segments f(l). Eq. (24) then allows us
to evaluate the mean radius a of the contact spots
in the corresponding three-dimensional section and
Eq. (25) determines the number of contact spots
per unit area, n. Finally, Eq. (23) determines the
probability density of the distribution for the
contact radius.

This method gives good results for the
distribution of contact spot sizes as long as the
bearing area ratio is less than 10%. For larger

values of bearing area ratio, more complex contact
spot geometries are obtained(5), some involving
multiply connected areas - i.e. one or more regions
of separation completely surrounded by contact.
However, these conditions occur only under
extremely high loads and are not of much practical
interest.

5. Results

As an example problem, we consider the contact
between two half spaces over a square nominal
contact area of size 1 mm x 1mm at various
values of the bearing area ratio B(z). The resistivity
of both half spaces was taken to be
ρ1 = ρ2 = 25 10 − 9Ωm.

Figure 3 shows the variation of (a) the
function h = na from Eq. (21) and (b) the
electrical resistance Re with the bearing area ratio
B(z). As we would expect, the contact resistance
decreases with increasing bearing area ratio. For
comparison, Nakamura(3) showed that the electrical
resistance for conduction through a single square
contact spot of side L is

R SN
e  =

0.868ρ
L

. (26)

Thus, if there were perfect electrical contact over
the entire nominal contact area, the resistance
would be 21.7 µΩ .

Fig. 3 Variation of (a) the function h = na from
Eq. (21) and (b) the electrical contact resistance Re
with bearing area ratio B(z). The dashed line in (b)
was obtained from Eq. (27).

5.1 Comparison with Greenwood's equation

Eq. (1) applies specifically to the case of a circular
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nominal contact area of radius α , containing a
distribution of N contact areas, each of radius a.
However, it is readily generalized to the present
case by (i) replacing the cluster resistance term
ρ/2α by R SN

e of Eq. (26) and (ii) replacing the

product Na by L2na , giving

RG =
ρ
L
(
1

2Lna
+ 0.868 ) . (27)

This simple expression is shown by the dashed line
in Figure 3(b) and it clearly gives a very good
approximation to the present numerical predictions.
In fact, Eq. (27) is always slightly lower than the
corresponding numerical calculation, the percentage
difference being shown in Figure 4 as a function
of na . The reason for this difference is that the
numerical treatment allows for the effect of the
microscopic resistance in modifying the mean
current density in the `cluster-scale' problem,
whereas Eq. (27) assumes that the cluster resistance
is always that which would be obtained in the
perfect contact problem. This is most significant
when the microscopic resistance is large, in which
case the mean current density will be approximately
uniform in the nominal contact area, rather than
having the square-root singular behaviour implied
by Nakamura's solution(3) and Eq. (26). However, in
this limit, the resistance is dominated by the
microscopic resistance term and hence Eq. (27) still
gives a good approximation to the numerical
results. The maximum percentage difference
therefore occurs at intermediate values of Lna ,

being 3.86% at Lna=1.35.

Fig. 4 Percentage difference between the predictions
of the Greenwood equation (27) and the solution of
section III as a function of Lna .

5.2 Effect of sampling length

Experimental measurements with the stylus
profilometer show that when using a large sampling
interval, the surface exhibits only a few asperities
with a large radius of curvature, whereas with a
smaller sampling interval, larger numbers of
asperities of smaller radius are revealed. Classical
asperity-based models of contact appear to give
reasonable predictions of electrical and thermal
resistance, but it is not clear what sampling interval

should be used in defining the resulting asperities.
Ideally, we would hope that the predictions
obtained using progressively refined surface
descriptions would tend to a limit at small
sampling length, thus providing some justification
for truncating the description at a
finite length scale.

This effect can be simulated in the present
example by increasing the grid refinement of the
RMD model. Figure 5(a) shows the function
h = na from Eq. (21) as a function of grid
refinement $m$ for a bearing area ratio of 5%.
This corresponds to the sampling of the rough
surface at an interval of 1/2m mm. The results

show a considerable increase in h with increasing
m and this translates to a comparable reduction of
contact resistance Re, as shown in Fig. 5(b). The
dashed line in Figure 5(b) corresponds to the
Greenwood equation (27). These numerical
calculations were extended to larger values of na
and confirm that the resistance tends to the perfect
contact limit of Eq. (26) as na→∞.

Fig. 5 Variation of (a) the function h = na from
Eq. (21) and (b) the electrical contact resistance Re
with sampling length 1/2m for a bearing area ratio
of 5%. The dashed line in (b) was obtained from
Eq. (27).

6. Discussion
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The multiscale model predicts a lower electrical
contact resistance when a finer scale is used, since
the finer scale reveals larger numbers of additional
microscopic contact spots. In particular, the mean
radius a decreases, but there is a larger increase in
the number of contact spots per unit area n,
leading to a net increase in h . Similar behaviour
has been reported in other recent studies of the
contact of quasi-fractal surfaces.(10,11)

The `bearing area' hypothesis used in the
example in section V predicts a distribution that
contains a some relatively large contact spots along
with increasingly large numbers of smaller spots as
the sampling length is reduced. Similar
characteristics are implied in the fractal contact
model of Majumdar and Bhushan(8). This theory is
most appropriate when the microscopic problem is
dominated by plastic deformation, since in this case
each local asperity contact is analogous to a
hardness indentation. By contrast, the elastic contact
theories of Borri-Brunetto et. al.(10) and Ciaverella
et. al(11) predict that the size of all contact spots
decreases with decreasing sampling length, so that
in the theoretical fractal limit we have an infinite
number of contact spots of zero size.

Elastic fractal contact theories also show that
the product h = na would be unbounded in the
limit m→∞, whilst the total area of actual contact

Ac = Σ
i= 1

N

πa 2i (28)

tends paradoxically to zero(14,15). If we define a new
function

ψ (ξ, η )≡ φ (ξ, η ) − φ (ξ, η ), (29)
and use this expression and (19) to substitute to
(9), we obtain

 

 

A

 2h(ξ,η)ψ(ξ,η)dξdη

π
√
(x−ξ)2+(y−η)2 

+ψ(x,y) =φ(x,y) .(30)

Now if h (ξ, η) increases without limit, the left
hand side of this equation becomes increasingly
dominated by the first term and ψ will become
small compared with φ . In the fractal limit, we

would obtain ψ = 0 and hence φ = φ . In other
words, the base potential would become equal to
the potential at the contact interface and Eqs. (16,
12) would give

ρ
2π  

 

A

 i (ξ, η)dξdη√
(x− ξ )2 + (y− η)2

= φ (x, y), (31)

which is the equation defining perfect electrical
contact throughout the nominal contact area A.
Thus, any contact theory that predicts a distribution
function h = na which increases without limit with
decreasing sampling length will imply an electrical
resistance equal to that based on the simple
assumption of perfect electrical contact in the
nominal contact area.

7. Conclusions

We have presented a model for the electrical
contact of rough surfaces, extending Greenwood's
equation for conduction through a
cluster of circular contacts to a system in which
the probability of a contact spot at a given location
is defined in statistical terms. The model was
illustrated using a mathematically generated surface
with fractal characteristics and the bearing area
hypothesis, properties of the surface being
determined using a relation between
three-dimensional properties and profile properties
due to Jang(9). We show that in the fractal limit
the theory would predict effectively perfect
electrical contact throughout the nominal contact
area, suggesting that the correlation between the
location of adjacent contact spots needs be taken
into account.
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