
A Parallel Finite Element Procedure for Contact-Impact Problems

Jason Har *

충돌해석을 위한 병렬유한요소 알고리즘

하재선

Key Words : Parallel processing(병렬처리), Domain Decomposition(영역분할), Contact-impact
problems(충돌문제), Explicit time integration(외연시간적분), Finite element(유한요소),
Bucket-sorting algorithm(버켓소팅 알고리즘)

Abstract

This paper presents a newly implemented parallel finite element procedure for contact-impact problems.
Three sub-algorithms are includes in the proposed parallel contact-impact procedure, such as a parallel
Belytschko-Lin-Tsay (BLT) shell element generation, a parallel explicit time integration scheme, and a
parallel contact search algorithm based on the master slave slide-line algorithm. The underlying focus of the
algorithms is on its effectiveness and efficiency for inclusion in future finite element systems on parallel
computers. Throughout this research, a prototype code, named GT-PARADYN, is developed on the IBM SP2,
a distributed-memory computer. Some numerical examples are provided to demonstrate the timing results of
the procedure, discussing the accuracy and efficiency of the code.

1. Introduction

Parallel processing using a multiple instruction
multiple data (MIMD) parallel computer is a promising
approach to the solution of engineering problems, which
usually require considerable computer time on past
pipelined vector supercomputers in simulating their
structural behaviors. This research presents a parallel
processing procedure to the solution of contact-impact
response of shell structures, based on displacement-finite
element methods, resulting in considerable reduction of
computation time. The foundation of the procedure is
placed on a perfect domain decomposition strategy and
an inter-processor communication minimization strategy.
The emphasis of the algorithm is placed on an element-
wise block domain decomposition strategy for the
parallel BLT shell element generation, a node-wise cyclic
domain decomposition strategy for calculating contact

force and a parallel explicit time integration scheme. The
procedure proposed in this paper is implemented on the
IBM-SP2 of The Maui High Performance Computing
Center by using MPI. Based on the previous work [1] by
the author, this research has been carried out as the
extension of that [1] to the contact-impact problems. To
show the accuracy and efficiency of the algorithms, pipe
whip examples are demonstrated by GT-PARADYN.

2. Belytschko Shell Element Formulation

The BLT shell element [2] has numerous features,
including a bilinear four-node quadrilateral shell element
with one-point quadrature classified as U 1 element [3]
by Hughes, a co-rotational velocity-strain formulation,
and an efficient hourglass control eliminating zero-
energy modes. The hourglass mode that can destroy the
solution due to the inherent singularity of the element
might be treated by the algorithm presented by Flanagan
and Belytschko [4]. The mass matrix might be also
transformed to the lumped mass matrix. This paper took
the method proposed by Key [5] and Hughes [6]. The
Jaumann stress rate is employed in constitutive
relationships to resolve the need for an objective rate of
Cauchy stress. Since the material experiences combined
kinematic and isotropic hardening beyond the yield

* 대한항공, 항공기술연구원
E-mail : mephdjh@krpost.net
TEL : (042)868-6272 FAX : (042)868-6128

대한기계학회 2003년도 추계학술대회 논문집

 1286

Explicit time integration

Updated Displacement element-wise block mapping

element = 1 to N

Rate of deformation tensor
{ } []{ }d B u=

von Mises associate rule

combined isotropic & kinematic hardening

Elemental internal force
• Hourglass treatment

Elemental Mass matrix
Traction force

Updated Stress
• Jaumann stress rate or
• Green-Naghdi stress rate
• Radial return algorithm

Belytschko shell element generation Syncronization point

Global search

(Bucket algorithm)

(Newton-Raphson method)
Parallel contact point locating algorithm

Contact force (penalty method)

Syncronization point End of do loopnode-wise cyclic mapping for local search

slave nodes = 1 to N

element-wise block mapping
element = 1 to N

a t n −
1
2

End of do loop

Local search
(closest master node)

node-wise blocking mapping for local search

hitting nodes = 1 to NCSyncronization point

2
1

n

e
2
1

nn
e

1n
e ûuu

+++ ∆+= &t

Explicit time integration

Updated Displacement element-wise block mapping

element = 1 to N

Rate of deformation tensor
{ } []{ }d B u=

von Mises associate rule

combined isotropic & kinematic hardening

Elemental internal force
• Hourglass treatment

Elemental Mass matrix
Traction force

Updated Stress
• Jaumann stress rate or
• Green-Naghdi stress rate
• Radial return algorithm

Belytschko shell element generation Syncronization point

Global search

(Bucket algorithm)

(Newton-Raphson method)
Parallel contact point locating algorithm

Contact force (penalty method)

Syncronization point End of do loopnode-wise cyclic mapping for local search

slave nodes = 1 to N
node-wise cyclic mapping for local search

slave nodes = 1 to N

element-wise block mapping
element = 1 to N

a t n −
1
2

End of do loop

Local search
(closest master node)

node-wise blocking mapping for local search

hitting nodes = 1 to NC
node-wise blocking mapping for local search

hitting nodes = 1 to NCSyncronization point

2
1

n

e
2
1

nn
e

1n
e ûuu

+++ ∆+= &t

Figure 1 Procedure for parallel contact-impact problems

surface, the computational plasticity procedure related to
the radial return method should be applied in this work

3. Parallel Contact-Impact Algorithm

As a contact algorithm, the so-called master slave
slide-line algorithm [7] applied in GT-PARADYN
includes two issues, e.g., contact search and contact force
calculation. The goal of the contact search is the location
of the contact point of each hitting node on the master
surface (target surface). The search takes place in three
stages. As sometimes termed global search, the first stage
is to search for a target node (master node) which is
closest to a hitting node - in this paper, a bucket sort
algorithm can be applied [8]. Benson and et al. [8]
exploited an efficient search algorithm, namely a bucket
sort algorithm which had been used in the computer
science community. The second and third stages are
referred to as local search. The second stage is to search
for a target segment (master segment) which contains the
target node and is closest to the hitting node. Finally the
third is to calculate the closest point of the target
segment to the hitting node in terms of the isoparametric
coordinates of the target segment. According to Hallquist
[7], the contact point might be located as the point on the
master element that contains the master node closest to
the slave node. The contact normal force vector may be
calculated by the stiffness factor, based on the penalty
method [7]. An equal and opposite force over the master
element may be determined. In what follows, we
describe the strategy of the parallel contact-impact
algorithm the schematic diagram of which is seen in

Figure 1.

This work employs the maladroit method as a domain
decomposition method. The whole domain can be
divided into several sub-domains based on the element
numbers which can be sorted in ascending order. A
processor whose rank is zero is, hereafter, called
“primary processor”. Other processors are referred to as
ordinary processors. The primary processor is
responsible to acquire information on input data
containing the total number of elements and nodes, time
incremental size, degrees of freedom per node, boundary
conditions, integration points, material property, section
property, given load data, element connectivity,
coordinates of nodes, and so on. And then, the primary

Table 1 Three-dimensional bucket sorting algorithm

ntbxy = ntbx*ntby;
do i=i,ntbz;

 do j=i,nbkz(i);
icell=(i-1)*ntbxy+(nby(ibz(j,i))-1)*ntbx+nbx(ibz(j,i));
ic(icell)=ic(icell)+i
ibxyz(ic(icell),icell)=ibz(j,i);

 enddo ;
ncell(icell)=ic(icell) ;
enddo;
do i=i,nnode;
nbxyz(i)=(nbz(i)-1)*ntbxy+(nby(i)-1)*ntbx+nbx(i) ;
enddo

대한기계학회 2003년도 추계학술대회 논문집

 1287

processor is to broadcast input data to ordinary
processors. The nodal information should be made on
element level, since GT-PARADYN conducts the BLT
shell element generation on element level in parallel [1].
The algorithm for the domain decomposition was
illustrated in Har [1]. All processors including the
primary processor are take part in the three-dimensional
sorting scheme at the same time. The three-dimensional
bucket sort scheme is so simple and does not take long
time. Thus after conducting the sorting scheme
respectively and independently, every processor retains
the same information, for example, the bucket number of
a node and the number of nodes inside a bucket. In Table
1, ‘ntbx’, ‘ntby’, and ‘ntbz’ represent the total numbers of
the buckets in the ‘x’, ‘y’, and ‘z’-direction respectively.
‘nbx(i)’, ‘nby(i)’, and ‘nbz(i)’ represent the bucket
number of the node ‘i’ in the ‘x’, ‘y’, and ‘z’-direction
respectively, which means one-dimensional bucket
sorting. ‘nbkx(i)’, ‘nbky(i)’, and ‘nbkz(i)’ represent the
numbers of nodes inside the ‘i’-th bucket in the ‘x’, ‘y’,
and ‘z’-direction respectively. ‘ibx(j,i)’, ‘iby(j,i)’, and
‘ibz(j,i)’ represent the ‘j’-th node number of the ‘i’-th
bucket in the ‘x’, ‘y’, and ‘z’-direction respectively.
‘icell’ represents the bucket number in the three-
dimensional space. ‘ibxyz(j,i)’ represents the ‘j’-th node
inside the ‘i’-th bucket in the three dimensional space.
Thus ‘ncell(i)’ represents the number of nodes in the
‘i’-th bucket in the three-dimensional space. Finally,
‘nbxyz(i)’ indicates the bucket number of the node ‘i’ in
the three-dimensional space as seen Table 1.

4. Domain Decomposition on Node Level for

Parallel Contact Point Searching

For contact problems, load balanced decomposition
can not be achieved by any static domain decomposition
techniques unless contacting area is found in advance,
because of the fact that some part of the body is in
contact, but the other part is not and contact area varies
continuously. Thus all processors are responsible to
search for potential hitting nodes and master elements
that are in contact. In Table 2, let ‘myid’ denote the rank
identification number of each processor, and let ‘nsa’
denote the first node of the slave body, and ‘nsb’ indicate
the last node of slave body. In order to achieve a
symmetric contact implementation, the slave and master
body must be swapped every time increment. Thus in the
next time increment, ‘nsa’ should be replaced by ‘nma’
representing the first node of the master body, and ‘nsb’
should be replaced by ‘nmb’ representing the last node of
the master body. For all processors to search for potential
hitting nodes and elements, the node-wise cyclic domain
decomposition is applied so that load balancing between
processors can be obtained. A processor with a slave
node is about to determine a master node having a
minimum distance between the slave node and the
master node on the ground that two nodes should share

the same bucket. Then each processor stores information
on how many slave nodes are concerned, and what slave
nodes are potentially about to contact, and what master
segments corresponding to hitting nodes are potentially
in contact into separate variables with respect to assigned
slave nodes. Ordinary processors are next to send their
information to the primary processor. Each ordinary
processor has different number of nodes and master
elements which are potentially in contact. The primary
processor plays a role of summing these data and
distributing work load. After the primary processor
determines information on how many slave nodes and
what slave nodes and master elements are potentially in
contact over a whole domain, and then it is responsible to
make a node-wise block domain decomposition and
distribute work balanced load to ordinary processors.

Table 2 Algorithm of searching for potential contacting
nodes and elements

ks=0;
kr=0;
do i=myid+nsa,nsb,np ;
node-wise domain decomposition
icell=nbxyz(i);
do j=1, ncell(icell);
if (ibxyz(j,icell).gt.nsb) then
dis(j)=sqrt((x(1,i)-x(1,ibxyz(j,icell)))**2+(x(2,I)-
x(2,ibxyz(j,icell)))**2+(x(3,i)-
x(3,ibxyz(j,icell)))**2)
kr=kr+1 ;
else ;
dis(j)=0.0 ;
endif ;
enddo;
if (kr.eq.0) goto 100 ;
dmin=dis(1);
do j=1,ncell(icell)
if (dmin.ge.dis(j).and.dis(j).ne.0.0) then;
dmin=dis(j) ;

mel=j ; endif;
enddo;
knode=ibxyz(mel,icell) ;
ks=ks+1 ;
nosl(ks)=i ;
noma(ks)=knode ;
nomp(ks)=mel

100 continue;
 enddo ! i - loop

대한기계학회 2003년도 추계학술대회 논문집

 1288

5. Parallel Contact-Point Locating Scheme

The primary processor is ready to make node-wise
block domain decomposition for getting ideal load
balance. As seen in Table 3, the primary processor
distributes work load to each ordinary processor. ‘kont’
represents the total number of potential hitting nodes in
the slave body. This number can be regarded to as a total
load which is about to be divided into the number of
available processors including primary processor. Then
‘kave’ is the average resulting from dividing ‘kont’ by
‘np’.

6. Pipe Whip Problems

Pipe whip problems, which have been investigated by
a number of researchers, are considered as good
examples to test a contact-impact algorithm. The Nuclear
Power Plant design regulations require pipes to be
designed against pipe whip. The high-pressure fluid
inside the pipe can cause a pipe to whip and impact
another pipe. Several examples are presented here. The
first one is taken to evaluate the accuracy of engineering
results using GT-PARADYN, and the second one to
measure the parallel performance of the code.

The two cylinders we have share the same material
properties, along with the same length, same thickness
and same radius. The Young’s modulus is 200 GPa, and
Poisson’s ratio 0.28, the mass density 7,860 kg/cubic
meter, and the yielding modulus is 250 MPa, the
hardening modulus is zero. The total length of a cylinder
is 2 m, thickness 3 mm, radius 8 cm, the initial gap
between pipes 0.01cm. The axes of two cylinders are
perpendicular to each other. The finite element model of
each pipe is composed of 512 four node quadrilateral
shell elements (16 elements around the circumference
and 32 elements along the axis). The time step size is
taken as

610−
 second and the response time is taken up

to 2.5 milliseconds, which means time integration loops
are carried out 2,500 times. The displacement of each
pipe was investigated at 6 points of the pipe. At first, we
wanted to see the accuracy of the code rather than
parallel performance. The upper

Table 3 Contact point locating algorithm

do i=1, kave ! i = potential hitting node number

 All Processors Conduct Local Search

 Contact Point Determination

 Check out If Penetration Occurs

 Contcat Force Calculation

 enddo

cylinder is flying with a velocity, -2 m/sec in the ‘z’-
direction, while the lower pipe is fixed at both ends. The
obtained results imply that the two pipes begin to
rebound at about 2 milliseconds. For 2.5 milliseconds of
the response analysis on one SP2 wide node, GT-
PARADYN required about 800 seconds. Malone [10],
for the same example, obtained the response up to 1
millisecond. Malone's result showed the displacement of
the contact point on the lower cylinder was 0.8 mm,
while that of the upper cylinder 1.0 mm. His results
implied that 0.2 mm gap between the upper and lower
cylinders remained constant up to 1.0 millisecond. By
the way, GT-PARADYN showed that the displacement of
the contact point on the lower cylinder was 0.86 mm,
which was almost in agreement with that by Malone.
Malone predicted the displacement of the center point of
the upper cylinder at 1 millisecond was about 1.5 mm,
while GT-PARADYN showed that it was 2.54 mm.
Figure 2 shows the deformed configuration of both pipes
which are contacting at 40 milliseconds each other with
an initial speed, 20 m/sec, rather than 2 m/sec in order to
see a visual exaggeration behavior of the shell structures.

Figure 2 Deformed configuration at 40 milliseconds

And Figure 3 shows the deformed configuration at 60
milliseconds for both pipes contacting without fixed
boundary conditions.

Figure 3 Deformed configuration at 60 milliseconds

대한기계학회 2003년도 추계학술대회 논문집

 1289

0

2

4

6

8

10

12

0 2 4 6 8 10

2 x (40 x 80) Elements

Ideal
GT-PARADYN

Number of Processors

Figure 4 Speed-up diagram for pipe whip problem

Next model explores a scalable parallel performance
of the code on the IBM SP2. The number of elements has
increased and the pipe sizes are much bigger than those
of the previous models. Each pipe consists of 3,200 four
node quadrilateral shell elements (40 elements around
the circumference and 80 elements along the axis). Both
pipes are flying with the same speed, 20 m/sec, at right
angles with each other, and toward each other. The total
model has 6,400 elements and 6,480 finite element nodes.
The time step size is taken as 610− millisecond and the
response duration time is taken up to 1.7 milliseconds,
which means time integration loops are carried out 1,700
times. Figure 3 shows the speed-up diagram obtained in
this work. Up to 10 processors was applied to see the
parallel performance for pipe whip problems. While
11,008 seconds on one processor was consumed as CPU
time, 2,256 seconds on 10 processors were needed. The
speedup came out with 4.88, and the parallel efficiency
became 48.8 %.

7. Conclusion

The contact-impact algorithm that this research
exploits consists of three parts, such as the three
dimensional bucket sort algorithm, the contact point
searching algorithm which includes the contact point
location algorithm, and the contact force calculation
algorithm. The three dimensional bucket sort algorithm
has severe data dependency. The bucket sort algorithm
occupies 20 % of the total CPU time of contact-impact
treatment when only one processor is employed.

After all, the present parallel contact algorithm aims
to reduce 80 % of the total CPU time of contact-impact
treatment as the number of processors increases. The
contact search algorithm contains lots of branches so that
many synchronization points must be inserted. However
as long as the number of nodes, which are potentially in
contact, increases, the CPU time might be reduced,
because these potential nodes must be checked for the
penetration possibility. We recommend that more
efficient contact algorithms be expected to appear in the

light of the results of this work.

Acknowledgment

Computations were performed on the IBM SP2 at the
Maui High Performance Computing Center and Georgia
Tech. The support of the Maui High Performance
computing Center, the Office of Information Technology
at Georgia Tech, and KISTI in Taejon are gratefully
acknowledged

References

(1) Har, J., 2002, A Scalable Parallel Algorithm for the
Nonlinear Transient Dynamic Response Analysis of
Shell Structures, Proceedings of the KSME 2002
Spring Annual Meeting,, pp. 476-481.

(2) Belytschko, T., Lin, J. I., and Tsay, C. S., 1984,
“Explicit Algorithms for the Nonlinear Dynamics of
Shells, Computer Methods in Mechanics &
Engineering, Vol. 42, pp. 225-251.

(3) Hughes, T.J.R., Cohen, M., Haroun, M., 1978,
Reduced and selective integration techniques in finite
element analysis of plates, Nuclear Engineering &
Design, Vol. 46, pp. 203-222.

(4) Flanagan, D. P. and Belytschko, T., 1981, “A
Uniform Strain Hexahedron and Quadrilateral with
Orthogonal Hourglass Control”, International Journal
for Numerical Method In Engineering, Vol. 17, pp.679-
706.

(5) Key, S.W. and Beisinger, Z.E., 1971, “The transient
dynamic analysis of thin shells by the finite element
method”, Third Conference of Matrix Methods in
Structural Mechanics, pp. 479-518, Wright-Patterson
A.F.B., Dayton, Ohio.

(6) Hughes, T.J.R., Liu, W. K. and Levit, I., 1981,
“Nonlinear dynamic finite element analysis of shells”,
Nonlinear Finite Element Analysis in Structural
Mechanics, Springer, Berlin, pp.151-168.

(7) Hallquist, J. O., Goudreau, G. L., Benson, D. J.,
1985, Sliding interfaces with contact-impact in large-
scale Lagrangian computations, Computer Methods in
Mechanics & Engineering, Vol. 51, pp. 107-137.

(8) Benson, D. J., Hallquist, J. O., 1990, A single
surface contact algorithm for the post-buckling
analysis of shell structures, Computer Methods in
Mechanics & Engineering, Vol. 78, pp. 141-163.

(9) Key, S. W., 1974, “A Finite Element Procedure for
Large Deformation Dynamic Response of
Axisymmetric Solids, Computer Methods in
Mechanics & Engineering, Vol. 4, pp.195-218.

(10) Malone, J. G. and Johnson, N. L., 1994, “A Parallel
Finite Element Contact/Impact Algorithm for Non-
Linear Explicit Transient Analysis: Part I-The Search
Algorithm and Contact Mechanics”, International
Journal for Numerical Method in Engineering, Vol. 37,
pp. 559-590.

대한기계학회 2003년도 추계학술대회 논문집

 1290

	INDEX
	제1발표장
	제2발표장
	제3발표장
	제4발표장
	제5발표장
	제6발표장
	제7발표장

