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Abstract 

In many practical engineering design problems, there are some design and manufacturing considerations 
that are difficult or infeasible to express in terms of an objective function or a constraint. In this situation, a set 
of optimal candidate designs having different topological complexities, not just a single optimal design, is 
preferred. To generate systematically such design candidates, we propose a hierarchical multiscale design 
resolution control scheme. In order to adjust its topological complexity by choosing a different starting 
resolution level in the hierarchical design space, we propose to employ a general M-band wavelet transform in 
transforming the original design space into the multiscale design space.  

1. Introduction 

  In topology optimization (see, e.g., Bensøe and 
Sigmund, 2003), the dependence of the topological 
complexity on the finite element mesh density is well 
known (Cheng and Olhoff, 1981). In typical compliance 
minimization problems, the use of finer meshes results in 
optimal designs with smaller-sized members with more 
complex connectivity. 
  Some investigations on the minimum length control 
and the mesh-dependency of the final topology are well 
summarized by Bensøe and Sigmund (2003). Recently, 
to suppress checkerboard and hinge patterns, a wavelet-
based method, called the translation-invariant 
differentiable wavelet shrinkage (Yoon et al., 2003), was 
also developed. Yoon and Kim (2003) extended the 
shrinkage technique to control feature size.  
  The motivations of the present investigation on 

topology complexity are the followings. In real 
engineering design practice, it is seldom possible to 
specify the desired degree of topological complexity as 
numerical values and often undesirable to preset the 
minimum member size before knowing various 
candidate designs. Besides, a single optimal solution 
maximizing the structural performance may not be the 
best design as it often causes manufacturing difficulties 
or yields some reliability problems. In this situation, 
designers look for several candidate designs having 
various levels of topological complexity while allowing 
some sacrifice in the structural performance. Motivated 
by this need, we aim at developing a new efficient 
topology design method to yield systematically a set of 
candidate designs having different topological 
complexities. 
  The main idea of this work is to generate the 
hierarchical multiscale design space having various 
refinement levels through the M-band Haar wavelet 
transform (M≥2). We employ 4-band, 8-band and 16-
band wavelet transforms to transform the single-scale 
design space to the multiscale design space. As a means 
to quantify the topological complexity, the perimeter 
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measure suggested by Haber et al. (1996) will be used. 
  For case studies, we consider two classes of topology 
design optimization problems: the compliance 
minimization problem and the compliant mechanism 
design problem. We use the conventional performance 
measures, but employ the non-conforming finite element 
(Jang et al., 2003) for checkerboard-free results. 
 

2. The Multiscale Design Space by the M-

band Wavelet Transform 

2.1 Overview 
  In standard topology optimization based on the density 
method, the design variables are the relative element 
densities ( )iρ  (i=0, L , nd= number of design 
variables) varying between 0 and 1. In the multiscale 
design method proposed by Kim and Yoon (2000) (also 
see Poulsen (2002)), we carry out design optimization 
using the multiscale design variables ( )  ( 0, , )dw i i n= L  
in the multiscale design space. If the single-scale density 
design space is directly transformed into the multiscale 
wavelet design space, the side constraints 
0 ( ) 1 ( 1, , ) di i nρ≤ ≤ = L become complicated 
constraints. By introducing the auxiliary variables ( )iξ  

( ( )iξ−∞ ≤ ≤ ∞ ), the original side constraints are 
automatically satisfied. To transform the auxiliary design 
space into the multiscale wavelet design space, we will 
consider the multiscale transform based on the Haar 
wavelet as it has the shortest support. 
 

2.2 Multiscale Space Refinement by the M-
band Wavelet Transform (M≥2) 
  The main idea to refine the multiscale design space is 
to use the M-band wavelet transform (M≥2). We will 
first compare the characteristics of the 2-band and 4-
band wavelet transforms. We will denote the single-scale 
design space by 0 0

0S S=  generated by 0ξ . 

{ }(1), (2),   , ( )
       ( ( ) )

T
dn

i
ξ ξ ξ

ξ

0 =

−∞ ≤ ≤ ∞

Lξ        (1)                         

  Now consider how the original single-scale space 0
0S  

can be divided into an average space 1
0S  and a 

difference space 1
1S  by the 2-band wavelet transform. 

As depicted in Fig. 1(a), the standard single-scale space 
is divided into two-spaces and then the average space is 
re-divided into two spaces. The superscript i in ( )i i

j jS w  

denotes the decomposition level and the subscript j 
implies “average” if j=0 or “difference” if j=1. 

 
(a) Design space decomposition by the 2-band wavelet 
transform (The symbol “ M↓ ” stands for the 
downsampling by a factor of M) 

 
(b) Energy concentration of each space i

jS  in the 
frequency domain 
Fig. 1 Application of the two-band wavelet transform in 
the one-dimensional case 
 
  From the viewpoint of resolution, the resolution level 
increases from 3

0S  towards 0 0
0 .S S= In the 

multiresolution multiscale design strategy, one can start 
the initial design optimization at any space 0

miS  and 

proceed to the highest-resolution space ( )0
0 0 .i

mS i i≥  

  As illustrated in Fig. 1(b), these subspaces i
jS  have 

the frequency localization property within their 
frequency band. Thus, it is obvious that the topological 
complexity of optimized designs is affected by the 
maximum spatial frequency that a selected subspace 0

iS  
(i=0,1,2,L ) can represent. Therefore, the complexity 
will be affected by the choice of the subspaces.  
  In order to have more design candidates for a given 
highest-resolution design space, 0

0S  must be 
decomposed into more subspaces. To achieve this goal, 
we propose to use the M-band wavelet transform with 
M=2,4,8,16,… (see, e.g., Mallat (1998) for its definition) 
in transforming the auxiliary spaceξ  to the multiscale 
design space .W  
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(a) Design space decomposition by the 4-band wavelet 
transform 

 
(b) Energy concentration of each subspace i

jS  in the 
frequency domain 
Fig. 2 Application of the four-band wavelet transform in 
one-dimensional cases 

 
  For the multiscale space decomposition illustrated in 
Fig. 2, one can now have the following multiresolution 
design scenarios (The symbol ⊕  stands for the direct 
sum.): 

Scenario 1 (IR=0.015625): 3 0
0 0 ( )S S→ →L  

Scenario 2 (IR=0.03125):  3 3 0
0 1 0 ( )S S S⊕ → →L  

Scenario 3 (IR=0.046875): 
3 3 3 0
0 1 2 0 ( )S S S S⊕ ⊕ → →L        

M                       (2) 
Scenario 9 (IR=0.75): 

     1 1 1 0
0 1 2 0 ( )S S S S⊕ ⊕ → →L  

Scenario 10 (IR=1.0):      0
0S  

 
  Because of the design space refinement by the 4-band 
transform, there are more multiresolution design 
scenarios possible than the 2-band case.  
  In the case of the two-dimensional design space, the 
original single-scale space 0

0S  consisting of the 
auxiliary design variables ξ  can be decomposed into 

several multiscale subspaces as suggested in Fig. 3. To 
transform the auxiliary spaceξ  to the multiscale design 
space W , one can use either the standard or the 
nonstandard wavelet transforms (see e.g., Stollnitz et al., 
1996). In this work, we will mainly use the nonstandard 
wavelet transform. 

 
(a) By the 2-band wavelet transform 

 
(b) By the 4-band wavelet transform 

Fig. 3 Multiscale design space decomposition for the 
two-dimensional design space 
 

3. Topology Complexity Control 

3.1 Complexity Measure 
  Since we are concerned with topology complexity, we 
need some measure to quantify it. As such a measure, we 
employ the perimeter measure P introduced by Haber et 
al. (1996). The definition of the perimeter P is 

2 2( )
1

K
P k kk

ρ ε ε= < > + −∑
=

l       (3) 

  In Eq. (3), 
kρ< >  represents the density jump 

between an element interface k of length kl  and the 
total number of the interfaces is denoted by K. A small 
positive number ε is used to guarantee the 
differentiability of the perimeter, but it is set to zero as 
no differentiation of P is needed in this work. 
 

3.2 Hierarchical Design Resolution Control 
  To control the topological complexity of the optimized 
design, we will choose the starting design spaces having 
different resolution levels, i.e. different values of IR in the 
multiresolution multiscale setting. The multiresolution 
design process is completed with two resolution levels, 
the starting level and the highest resolution level. Here, 
we will consider two typical classes of topology 
optimization problems: the compliance minimization 
problem and the compliant mechanism design problem. 
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As the optimization algorithm, we use the method of 
moving asymptotes (Svanberg, 1987). 
 

Compliance Minimization Problem 
  As a specific numerical example, we consider the 
MBB beam optimization problem depicted in Fig. 
4.

 
Fig. 4 The MBB beam design problem with the mass 
constraint ratio of 50%. (The design domain is 
descretized by 192×64 nonconforming finite elements.) 
 
  In Fig. 5, we present the final optimized designs by 4 
different multiresolution design scenarios. Since non-
conforming elements give checkerboard-free results, no 
filtering or similar image processing is used. As the 
relative initial design space resolution (IR) increases, the 
value of perimeter P increases; see Fig. 5. On the other 
hand, the optimal value of the objective function Lopt at 
the final stage also tends to decrease as IR becomes larger. 
Therefore, the simpler topological complexity usually 
comes at the sacrifice of the system performance. 
 

 
(a) Scenario with IR=0.25 (P=174.7984, Lopt=46.1118) 

 

 
(b) Scenario with IR=0.5 (P=221.5415, Lopt=45.5861) 

 

 
(c) Scenario with IR=0.75 (P=236.7185, Lopt=44.7226) 

 

 
(d) Scenario with IR=1.0 (P=264.2628, Lopt=44.9855) 

 
Fig. 5 The optimized designs for the MBB problem by 4 
different multiresolution design scenarios in the 
multiscale design space generated by the 4-band Haar 
wavelet transform 
 
  Now we consider the values of P and Lopt for various 
multiresolution design scenarios with 4-, 8- and 16-band 
wavelet transforms. Figure 6(a) shows that the 

topological complexity of the final optimized design is 
almost determined by the starting design resolution level. 
Furthermore, by using the M-band wavelet transforms 
with M>2, candidate optimal designs having various 
degrees of topological complexity can be quite 
systematically found.  
 

 
(a) The value of the perimeter P 

 
(b) The value of the objective function Lopt 

 
Fig. 6 The values of the perimeter P and the objective 
function Lopt for various multiresolution design scenarios 
 
  Even for the same value of IR, the use of different 
multiscale decomposition yields somewhat different 
values of P though the difference is not so significant. To 
see why this happens, we examine, in Fig. 7, the (spatial) 
frequency characteristics of the filters h used to generate 

1 1
0 1,i iS S+ + , etc. from 0

iS . Figure 7 compares the 
frequency characteristics of the filters used for 4-, and 8-
band one-dimensional wavelet transforms. As illustrated 
by Fig. 7, the differences depending on the number of the 
wavelet bands used in the filter characteristics affect the 
frequency characteristics of the initial starting design 
space in the multiresolution setting. The use of the 
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higher-band wavelets gives better frequency localizations, 
so it is easier to control the topological complexity of the 
final design. However, the use of higher-bands requires 
the wavelets having longer spatial supports. Therefore, it 
is not possible to control the topological complexity 
exactly while minimizing the objective function. 
Consequently, the P-IR relation becomes somewhat less 
monotonic when the 16-band wavelet transform is used: 
see Fig. 6(a). However, there is a very good correlation 
between P and IR especially when the band number is 
moderate. 

 
(a) 4-band 

 
(b) 8-band 

Fig. 7 The spatial frequency characteristics of the filters 
h for the one-dimensional 4-, 8-band wavelet transforms 
 
  At this stage, we have not yet established an one-to-
one correspondence between the frequency 
characteristics of h and the topology complexity. If we 
use other wavelets, this may be possible, but this requires 
further investigation. Nonetheless, the present strategy 
yields several design candidates having different 
topological complexity quite systematically. 

 
Compliant Thermal Actuator Design 

  As the second typical class of topology optimization 
problems, we consider the design of a compliant 
mechanism, in particular, the design of a micro-sized 
compliant thermal actuator (see Fig. 8). 

 
Fig. 8 The compliant thermal micro actuator design 
problem with the mass constraint ratio of 20%. (Half of 
the design domain is discretized by 128×64 
nonconforming finite elements.) 
 
  We follow the formulation by Sigmund (2001) and 
state the design problem briefly. 

( )

( )

( )
( ) ( ) ( )

( )

0
1

min

1

Maximize  

Subject to 0

                 0 1  1,2, ,

                 

                 

d

i

d

e

out

n

i i
i

d

n
T
i

e

u

H v M

i n

Tdι

ρ

ρ ρ

ρ α

=

Ω
=

= − ≤

< ≤ ≤ =

=

= ∆ Ω

∑

∑∫

L

ρ

ρ

ρ ρ ρK U R

R B D

 (4) 

where iB  is the strain-displacement relating matrix 
commonly used in the finite element and the constitutive 
matrix ( ).iρD The symbol T∆  denotes the 

temperature change and α  is the thermal coefficient 
vector. 

 

 
Fig. 9 The optimized design for the compliant thermal 
micro actuator design problem by 4 different 
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multiresolution design scenarios in the multiscale design 
space generated by the 16-band Haar wavelet transform 
 
  Figure 9 shows the final optimized results by 4-
different multiresolution design scenarios with IR=0.25, 
0.5, 0.75, 1.0 where the multiscale design space is 
generated by the 16-band nonstandard Haar wavelet 
transforms. The correlation between the topological 
complexity and the relative resolution level IR of the 
starting design space is plotted in Fig. 10. As in the 
compliance minimization problem, we can see that the 
topological complexity tends to increase as IR increases. 

 
Fig. 10 The correlation between the value of the 
perimeter (P) and the relative resolution of the starting 
design space (IR) for the problem described in Fig. 8 
 

4. Conclusions 

  The topological complexity issue itself is not a new 
issue, but we investigate it from the viewpoint of the 
systematic generation of a set of several candidate 
designs having different complexities. Our approach was 
to vary the resolution level of the initial design space 
using the multiresolution multiscale design scenarios. To 
refine the multiscale design space and thus to allow 
various resolution levels to start with, we developed a 
method using M-band wavelet transforms (with 
M=4,8,16,L ). The followings are the observations we 
have made through the present investigation: 

 
1. The relative resolution level IR of the starting 

design space in the multiresolution multiscale 
setting governs the topological complexity of 
the highest-resolution optimized design. 

2. If the number of the wavelet band is not so large, 
the perimeter P tends to increase monotonically 
as the starting resolution level increases; there is 
a good correlation between IR and P. 
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