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Abstract 

Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and 
installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. 
This paper investigates identifiable parameters and optimum postures for four different calibration procedures 
– measuring postures completely with inverse kinematic residuals, measuring postures completely with 
forward kinematics residuals, measuring only the three position components, and restraining the mobility of 
the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel 
HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete 
posture measurements. For the case of position measurements, one and for the case of constraint link, three 
parameters were found non-identifiable. Selecting postures for measurement is also an important issue for 
efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to 
find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of 
the search space.

1. Introduction 

Recently, increasing attention has been given to the 
applications of parallel manipulators in different areas. 
Parallel manipulators are favored for their high accuracy, 
increased rigidity, and better speed characteristics. 
Accuracy of the parallel manipulators, however, can be 
greatly deteriorated because of inaccurate knowledge 
geometric parameters resulting from fabrication and 
assembly errors. Kinematic calibration is therefore 

required to compute the actual values of the geometric 
parameters and thus enhance the accuracy. Without 
calibration, the significance and veridicality of results for 
experimental robotics cannot be gauged. One may expect 
to spend most of experimental effort in calibration and 
less in actually running the experiments in control [1]. 

Kinematic calibration requires redundant sensory 
information. This information can be acquired by using 
external sensors or by adding redundant sensors to the 
system [2-4], or by restraining the motion of the end-
effector through some locking device [5-8]. The last two 
are referred to as self-calibration or autonomous 
calibration procedures. In another calibration procedures, 
the end-effector may be needed to traverse precise 
trajectories while measurement data is collected [9-12]. 
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Classical methods of calibration require measurement 
of complete or partial postures of the end-effector using 
some external measuring devices. Numerous devices 
have been used for calibration of parallel manipulators. 
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Zhuang et al. [3] used electronic Theodolites for the 
calibration of the Stewart platform along with standard 
measuring tapes. For a 3 degree-of-freedom (DOF) 
redundant parallel robot. Ota et al performed calibration 
of a parallel machine tool, HexaM, using a Double Ball 
Bar system [13]. Takeda et al. proposed use of low order 
Fourier series to calibrate parallel manipulators using 
Double Ball Bar system [14]. Besnard et al. [4] 
demonstrated that Gough-Stewart platform could be 
calibrated using two inclinometers. All of the kinematic 
parameters can be identified when the Cartesian posture 
is completely measured. However, measuring all 
components of the Cartesian posture, particularly the 
orientation, can be difficult and expensive. With partial 
pose measurements, experimental procedure is simpler 
but some of the parameters may not be identified. 

Zhuang et al. [3] formulated the cost function in terms 
of the inverse kinematic residuals that results in block 
diagonal identification Jacobian matrix and the 
identification procedure can be implemented without 
solving forward kinematics. Daney et al. [19] presented 
variable elimination technique to improve the 
effectiveness of identification procedure when only 
partial pose information is available. Khalil et al. [15] 
presented an algorithm to calculate the identifiable 
parameters for robots with tree structures. Based on QR 
analyses of the identification Jacobian matrix, Besnard 
and Khalil [18] analyzed numerical relations between the 
identifiable and the non-identifiable parameters for 
different calibration schemes with case study on the 
Gough-Stewart platform. 

Effectiveness of the calibration procedure depends 
greatly on the measurements performed. While the 
Cartesian postures are completely measured (3 
translations and 3 rotations), the results of calibration are 
uniform over the workspace and all of the geometric 
parameters tend to their actual values. With partial pose 
measurements, however, few geometric parameters may 
not be identifiable and effectiveness of the calibration 
results may vary significantly with in the workspace. QR 
decomposition of the identification Jacobian matrix can 
reveal the non-identifiable parameters. Selecting postures 
for measurement is also an important issue for efficient 
calibration procedure. Typically, the condition number of 
the identification Jacobian is minimized to find optimum 
postures. However, other cost functions that can be 
employed for minimization are summarized by Daney 
[20]. 

This paper investigates non-identifiable parameters 
and optimum postures for four different calibration 
procedures of parallel manipulators. The study is 
performed for a 6 degree-of-freedom (DOF) fully 
parallel Hexa Slide manipulator, HSM. The four 
calibration procedures are (i) Postures measured 

completely and inverse kinematics residuals (ii) Postures 
measured completely and forward kinematics residuals 
(iii) Only positions measured and (iv) Mobility of the 
end-effector restrained by using a constraint link. For 
optimum postures, the problem was formulated as a 
constrained optimization problem by specifying limits on 
the search space where the search space is defined in the 
Cartesian coordinates. 

This paper is organized as follows: Hexa Slide 
Manipulator is introduced in Section 2. Section 3 
discusses identifiable parameters for three different 
calibration procedures. Optimum postures for calibration 
of HSM are presented in section 4. Section 5 concludes 
the study. 

2. Description of the Mechanism 
 

The Hexa Slide mechanism, HSM, on which the study 
is performed, is a 6-degree-of-freedom fully parallel 
manipulator of PRRS type as shown in figures. Figure 1 
shows the identification parameters and figure 2 
elaborates the base frame definition. Ai0 and Ai1, in 
figure 1, denote the start and the end points of the ith 
(i=1,2,…,6) rail axis. Ai denotes the center of ith 
universal joint and it lies on the line segment Ai0Ai1. All 
of the rail axes are identical and the nominal link length 

 for each leg is equal. The articular variable, iλ , is 
the distance between the points Ai0 and Ai. The point Bi 
denotes the center of spherical joint at the platform. 
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Fig. 1 Schematic of HSM 
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Fig. 2 Global Reference Coordinate System 
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Posture of the mobile platform is represented with a 
position vector of the mobile frame center in the base 
frame and with three Euler angles as 

[ ]X x y z θ ψ φ=               (1) 
The Euler angles are defined as: ψ rotation about the 

global X-axis, θ  rotation about the global Y-axis and 
φ  rotation about the rotated local z-axis. Orientation is 
thus given by: , , ,Y X zR R R Rθ ψ φ=  

C C S S S C S S S C S C
R C S C C S

S C C S S S S C S C C C

θ φ θ φ ψ θ φ θ ψ φ θ ψ
ψ φ ψ φ ψ

θ φ θ ψ φ θ φ θ ψ φ θ ψ

+ − +⎡
⎢ ⎥= −⎢ ⎥
⎢− + +⎣

⎤

⎥⎦

 (2)  

2.1 The Inverse/Forward Kinematics   
The problem of inverse kinematics is to compute the 
articular variables for a given position and orientation of 
the mobile platform. For the HSM, the problem of 
inverse kinematics is simple and unique and is solved 
individually for each kinematic chain. Considering a 
single link chain, the inverse kinematics relation can be 
expressed as 

( )22T 2 T
0 0λ = − +a A B - A B a A B0  (3) 

In forward kinematics, position and orientation of the 
mobile platform are computed for given values of 
articular variables. Forward kinematics may yield 
multiple solutions and is solved numerically using the 
manipulator Jacobian [24]. 

2.2 Frames and Identification Parameters 
The number of identification parameters depends on 

the way the reference frames are assigned. By assigning 
the reference frames properly, the complexity of the 
calibration problem can be reduced significantly. Fassi et 
al. studied the manipulator under consideration for 
minimum, complete, and parametrically continuos model 
for kinematic calibration and found that 54 parameters 
are required when measurements are performed 
externally. Number of parameters, however, can be 
reduced by proper frame assignments [4]. 

For this study, origin of the base frame, OXYZ, is 
located at the A10. X-axis of the base frame is defined 
along the line segment A10-A20. Z-axis of the base frame 
is directed opposite to the gravity acceleration and the 
OXYZ system forms a RHS. With this frame assignment, 
the following 5 parameters will be zero and therefore 
will not be considered as identification parameters. 

10 10 10 20 20 0x y z y zA A A A A= = = = =   
Origin of the mobile frame, P, is located at the center 

of the mobile platform. The PX’Y’Z’ also forms a RHS 
and is parallel to OXYZ when rotation angles are zero. 

Considering a kinematic chain of the HSM, following 
are the identification parameters in general: 

S Joints’ location:   3 parameters/chain B

Slider Axis Start Point:  3 parameters/chain 0A

Slider direction vector:a  2 parameters/chain 
Link Length:   1 parameters/chain 
Note that the unit vectors of the sliders’ are specified 

by two components; say, the x and the y component. 
This makes 9 parameters for each link chain and 54 
parameters in total for the mechanism. Note that all 
parameters are measured in the units of length. Note also 
that the B points are defined with respect to the PX’Y’Z’ 
frame while the A0 points are defined with respect to the 
OXYZ frame. 
From equation (3), 6 parameters will always be zero. 
Therefore, the total number identification parameters are 
reduced to 49. 
 

3. Identifiable Parameters for Four 

Calibration Procedures  

To perform the calibration procedure, we should solve 
the following linearized equation. 

( , ) ( , )Y X u J X u u∆ = i∆  (4) 

where Y∆  is the vector of error residuals,  is the 
vector of Cartesian posture, u is the vector of the 
identification parameters, and 

X

J is the Identification 
Jacobian matrix. 

In general, it is not always possible to calibrate 
kinematic parameters and it is important to study if all of 
the parameters are identifiable with particular calibration 
procedure. Besnard and Khalil [22] proposed use of QR 
decomposition of the identification jacobian matrix to 
find the non-identifiable parameters for different 
calibration schemes. Below, we present briefly the QR 
decomposition. 

Let m be the number of measurement data and r be the 
number of kinematic calibration parameters. Size of the 
Identification Jacobian matrix will then be m×r, where 
m>>r. QR decomposition of the matrix can be expressed 
as 
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…
…

…
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…

 (5) 

For the non-identifiable parameters, the corresponding 
diagonal entity of the matrix R is zero. While performing 
numerical computations, the values may be small but still 
not zero. Thus, τ is defined as numerical zero and if 

iir τ≤ , it is taken zero. The tolerance is defined as 

max iirτ ε= × × r , where ε  is the machine accuracy 
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[16]. 

3.1 Case-I: Complete Posture measurements 
with Inverse kinematics residuals  

Expressing the error residual in terms of the articular 
variables results in block diagonal identification Jacobian 
matrix. Also, the derivatives required for establishing the 
identification Jacobian can be expressed in closed form 
thereby avoiding the numerical inaccuracies. The 
problem of identification, thus, can be solved 
individually for each kinematic chain as 

1 2 1
1 2 1

...i i i i
i j

j j

f f f fu u u
u u u u

λ −
−

∂ ∂ ∂ ∂
∆ = ∆ + ∆ + + ∆ + ∆

∂ ∂ ∂ ∂ ju  (6) 

where j represents the number of identification 
parameters for each kinematic chain. Note that at least j 
postures are required to solve the identification problem 
in this case. When postures are measured completely, 6 
values are measured for each posture – the three 
positions and the three rotations. If k measurements are 
performed, then minimum number of postures, j, can be 
expressed as 

6j k≥  (7) 

Equation 4 can be expressed in detail for this case as 
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⎥⎥⎦

   (8) 

Computations show that all of the 49 kinematic 
parameters are identifiable in this case. Further, the 
condition number of its identification jacobian can gauge 
the effectiveness of any calibration procedure. Condition 
number of the identification jacobian is minimum in this 
case as will be shown later. Also, the identification 
jacobian is homogenous – all entities bear the same units. 

3.2 Case-II: Complete Posture measurements 
with Forward kinematics residuals 

In this case, the error residual is expressed in terms of 
the components of the Cartesian posture. Thus, for each 
measurement, 3 rows of the identification jacobian are 
computed based on the position components and 3 based 
on the rotations. The matrix, thus, is not homogenous 
and may need scaling. The problem of identification can 
be expressed as 

 

1 2 1
1 2 1

...i i i i
i j

j j

g g g g
jX u u u

u u u u−
−

∂ ∂ ∂ ∂
∆ = ∆ + ∆ + + ∆ + ∆

∂ ∂ ∂ ∂
u  (9) 

In this case, the identification Jacobian matrix is 
computed numerically through perturbation of the 
identification parameters. Numerical value of 
perturbation was taken as 10-7. 

Again, in this case, all of the 49 parameters were 
found identifiable. Condition number of the 
identification Jacobian matrix, however, is higher as 
compared to the first case. 

3.3 Case – III: Measuring only the 3 position 
components 

When only partial pose information is available, we 
cannot use the inverse kinematics residuals and 
computations are based on the forward kinematic model. 
Equation 9 holds valid for this case with the difference 
that the computed error vector consists of only position 
components. For each measurement, only 3 rows of the 
identification Jacobian are computed numerically. 
The number of identifiable parameters was found to be 
48 in this case. This means one of the identification 
parameters cannot be identified. Also, the condition 
number was found much higher than the first two cases. 
The identification Jacobian, however, is homogenous. 

3.4 Case – IV: Using constraint link 
When constraint link is employed, all of the measured 

postures are equidistant (equal to the length of the 
constraint link) from certain point. This fact is exploited 
to perform the identification. The problem of the 
identification can thus be expressed as 

1 2 1
1 2 1

...i i i i
i

j j

g g g gl u u u
u u u u−

−

∂ ∂ ∂ ∂
j ju∆ = ∆ + ∆ + + ∆ + ∆

∂ ∂ ∂ ∂
 (10) 

For each measurement, a single row of the 
homogenous identification Jacobian matrix is computed 
numerically. 

In this case, we need to define extra parameters, as the 
exact position of the ends of the constraint link may not 
be known precisely. Figure 3 shows the schematic of the 
calibration procedure for the case under consideration. It 
can be seen that parameters for two offsets need to be 
added. Adding 6 more parameters to makes total of 55 
identification parameters. 

QR decomposition reveals that the number of 
identifiable parameters is 46, thus making 9 parameters 
non-identifiable. Condition number of the identification 
Jacobian is highest of all the cases. 
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Fig. 3 Schematic diagram of calibration method using a 
constraint link 
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3.5 Comparison of the Calibration procedures 
Table 1 summarizes the results for the calibration 

procedures. If the postures are measured completely, all 
of the parameters can be identified. Also, the inverse 
kinematics residuals give better results due to lower 
value of the condition number. With only position 
measurements, all parameters cannot be identified. Note 
that the error residual may still reduce significantly. The 
calibrated parameters, however, may give varying 
accuracy in different region of the workspace. The case 
of the constraint link shows as many as 9 non-
identifiable parameters and does not seem a practical 
solution to calibration. 

For cases III and IV, additional information is required 
to make possible identification of all of the parameters. 
Use of inclinometers and/or rotary encoder sensors can 
be studied to identify all calibration parameters. 

Table 1 Comparison of Calibration Procedures 

 

 Case I Case II Case III Case IV 

Identifiable 
Parameters 49 49 48 46 

  Condition 
Number 1.4e2 1.5e3 2.4e3 1.4e5 

4. Optimum Postures for Calibration 

Measuring postures involve time and may be 
expensive sometimes. Performing measurements at 
optimum postures can assure better performance of 
calibration procedures. It can thus reduce experimental 
cost and effort. 

Typically, the condition number of the identification 
Jacobian is minimized for searching the optimum 
postures and in this study it is employed as the cost 
function. However, many different criteria have been 
used for this optimization problem, including [20]. 

• ( )TDet J J  where  represents 
determinant 

Det

• 1
L

L

m
σ σ  where m is the number of 

measurement postures, L is the number of 
singular values and σ  represents the 
singular values. 

• 
1

Lσ
σ

 - is the inverse of the condition number 

and is maximized for optimization. The 
maximum value of this cost function is 1. 

• Lσ  

• 
2

1

Lσ
σ

 

In this study, the problem of optimization is formulated 
as constrained minimization where the search is specified 
in Cartesian coordinates and is limited by specifying 
constraints. Note that ideally the search space of the 
optimum postures should be the entire workspace of the 

manipulator. However, boundaries of the actual 
workspace are mostly complex functions of the spatial 
coordinates and its difficult to model them exactly in the 
Cartesian space. Therefore, a simple rectangular region 
was chosen for search in approximate middle of the 
workspace. If the search space is specified in the joint 
space, more working volume can be exploited. However, 
postures generated within such space may need to be 
checked for being valid. Table 2 shows the values of the 
specified constant constraints. Note that the “fmincon” 
function of the MATLAB optimization toolbox was used 
to solve the problem with condition number of the 
identification Jacobian taken as the cost function. 

Table 2 Search space for optimum postures 
X(m) Y(m) Z(m) ψ (o) θ (o) φ (o) 

-0.3 - 0.3 -1.1 - -0.5 -1.3 - -1.0 ± 15 ± 15 ± 30 

4.1 Case I 
Starting with randomly generated postures, the 

optimum postures were found after few iterations of the 
optimization function. Table 3 shows the values of the 
condition number before and after the minimization. 

Table 3 Comparison of Condition number (Case I) 
Number of Postures Condition number 
9 postures - Random 2.888e+3 
9 postures - Optimum 140.2 

 
Figure 4 shows the orientation of postures with in the 
search space before and after the optimization. It can 
easily be observed that the trend of postures is to orient 
themselves near the boundaries of the workspace. 
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           (a)                    (b)  

Fig. 4 Optimum postures - case I  (a) Postures before 
optimization  (b) Postures after optimization 

4.2 Cases II, III, and IV 
The trend of postures to orient themselves on the 

boundaries is same for all the cases. So, in this 
subsection we compare and discuss only the condition 
number for cases II, III, and IV. Table 4 – Table 6 
compare the condition numbers of the identification 
Jacobians before and after the optimization. 

Table 4 Comparison of Condition number (Case II) 
Number of data Condition number 

9 postures - Random 2.153e+4 
9 postures - Optimum 1537.3 

 

대한기계학회 2003년도 추계학술대회 논문집

 1480



 

Table 5 Comparison of Condition number (Case III) 
Number of data Condition number 

16 postures - Random 3.3916e+4 
16 postures - Optimum 2430.2 

Table 6 Comparison of Condition number (Case IV) 
Number of data Condition number 

46 postures - Random 6.0120e+5 
46 postures - Optimum 1.4523e+5 

Note that the reduction of the cost function, condition 
number of the identification Jacobian, is much less for 
case III and case IV as compared to case I and case II. 
Generally, the higher the condition number, the less 
reliable will be the calibration results. High values of 
condition number stress the need of augmenting more 
information for Cases III and IV. 

5. Conclusions 

Computer simulations results show that for case I and 
case II, all of the 49 geometric parameters 49 are 
identifiable. For case III, only 48 geometric parameters 
can be identified. For case IV, the number of identifiable 
parameters is just 46 out of the total 55 parameters in this 
case. 

Optimization for the measurement postures results in 
significant reduction of the condition number for case I 
and case II. For case III and case IV the reduction is not 
very significant. A same trend was observed during 
optimization for all of the cases – the measurement 
postures move towards the boundary of the search space. 
The last two cases require more information for effective 
calibration and some other sensors should be used to 
augment the measurement information. 
 

ACKNOWLEDGMENTS 
This work was supported by Korea Research Foundation 
under grant KRF-2002-041-D00039. 
 

References 
(1) Hollerbach, J.M. and Wampler C. W., Dec., 1996, “The 

calibration index and taxonomy for robot calibration 
methods,” The International Journal of Robotic Research, 
Vol. 15, No. 6. 

(2) O. Massory, J. Wang and H. Zhuang, , 1993 ,“On the 
accuracy of a Stewart platform – Part II,   Kinematic 
calibration and compensation” in Proc. IEEE Int. Conf. 
on Robotics., pp.725 –731. 

(3) H. Zhuang, J. Yan, O. Masory, 1998, “Calibration of 
stewart platforms and other parallel manipulators by 
minimizing inverse kinematic residuals” J.of Rob. 
Systems,15,7, pp.395- 405. 

(4) Besnard S., and Khalil W., 1999, “Calibration of parallel 
robots using two inclinometers”, IEEE International 
Conference on Robotics and Automation. 

(5) P. Maurine, K. Abe and M. Uchiyama, 1999, “Towards 
more accurate parallel robots” in IMEKO- XV, 15th 
World Congress of Int. Measurement Confederation, 
Osaka, Japan, 10, pp.73-80. 

(6) W. Khalil and S. Besanrd, 1999, “Self calibration of 
Stewart-Gough parallel robots without extra sensors” 
IEEE transaction on Robotics and Automation, pp.1116-
1121. 

(7) Rauf, A., and Ryu, J., May 2001, “Fully autonomous 
calibration of parallel manipulators by imposing position 
constrain”, Proceedings of IEEE international conference 
on Robotics and Automation, Seoul, Korea. 

(8) Ryu, J., and Rauf, A., July 2001, “A new method for 
fully autonomous calibration of parallel manipulators 
using a constraint link”, Proceedings of AIM’01 
conference, Italy. 

(9) W. S. Newman and D. W. Osborn, 1993, “A New 
Method for Kinematic Parameter Calibration via Laser 
Line Tracking” IEEE Int. Conf. on Robotics and 
Automation. Vol. 2. pp. 160-165. 

(10) X. L. Zhong. and J.M. Lewis. ,1995, “A New Method for 
Autonomous Robot Calibration.” IEEE Int. Conf. on 
Robotics and Automation. pp. 1790-1795. 

(11) D. J. Bennett and J. M. Hoolerbach, 1989, “Identifying 
the Kinematics of Robots and their Tasks” IEEE Int. 
Conf. on Robotics and Automation, pp.580-586. 

(12) H. Zhuang, L.Wang and Z.S.Roth, 1993, “Simultaneous 
Calibration of a Robot and a Hand-Mounted Camera” 
IEEE Int. Conf. on Robotics and Automation, Vol. 2, 
pp.149-154. 

(13) Ota, H., Shibukawa, T., Tooyama, T. and Uchiyama, M., 
Sep. 2000, “Forward kinematic calibration method for 
parallel mechanism using pose data measured by a 
double ball bar system”, Proceedings of the Year 2000 
Parallel Kinematic Machines International Conference, p 
57-62. 

(14) Takeda Y., Shen G., and Funabashi H., Oct. 2002, “A 
DBB-based kinematic calibration method for in-parallel 
actuated mechanisms using a fourier series”, Proceedings 
of DETC’02. 

(15) W.Khalil, M.Gautier and Ch. Engquehard, 1991, 
“Identifiable parameters and optimum configurations for 
robots calibration”, Robotica Vol.9,  pp.63-70. 

(16) J.J. Dongara, C.B. Moler, J.R. Bunch and G.W. Stewart, 
“LINPACK User’s Guide,” PA SLAM, Philadelphia, 
1979. 

(17) J.H. Borm and C.H. Menq, 1989, “Experimental Study of 
observability of parameter errors in robot calibration” 
IEEE Int. Con. on Robotics and Automation, Scottsdale, 
pp.587-592. 

(18) Besnard S, Khalil W., May 2001, "Identifiable 
parameters for parallel robots kinematic calibration", In 
IEEE International Conference on Robotics and 
Automation (ICRA), Korea, Seoul.  

(19) D. Daney, I. Z. Emiris, May 2001,"Robust parallel robot 
calibration with partial information." In IEEE 
International Conference on Robotics and Automation 
(ICRA), Korea, Seoul. 

(20) Daney, D., May 2002, “Optimal measurement 
configurations for Gough platform calibration”, 
Proceedings of ICRA, Washington DC. 

(21) Merlet, J-P., 1997, Les robots paralleles, 2nd ed., Hermes, 
Paris. 

(22) Fassi, I., and Legnani, G., Oct. 2002, “Automatic 
identification of a minimum, complete and 
parametrically continuos model for the geometrical 
calibration of parallel robots”, Proceedings of the 
Workshop on fundamental issues and future research 
directions for parallel mechanisms and manipulators, 
Quebec, Canada. 

대한기계학회 2003년도 추계학술대회 논문집

 1481


	INDEX
	제1발표장
	제2발표장
	제3발표장
	제4발표장
	제5발표장
	제6발표장
	제7발표장




