가

*. *. *.

Dynamic Analysis of Driving Mechanism for ALTS with High-Speed Transfer Characteristics

Won Sun Chung, Byung Hee Kwon, Kil Young Ahn, Il Sung Oh

 Key Words:
 Automatic Load Transfer Switch(
 ALTS), Dynamic Model (

), Friction Effect(
), Flat Spring (
)

Abstract

The automatic load transfer switch (ALTS) typically automatically transfers electrical loads from a normal electrical power source to an emergency electrical power source upon reduction or loss of normal power source voltage. It can also automatically re-transfer the load to the normal power source when the normal voltage has been restored within acceptable limits. The transfer operation of ALTS is accomplished by a spring-driven linkage mechanism. In this paper we build a dynamic model of driving mechanism for ALTS using ADAMS and checked the characteristics of the transfer operation. Finally we performed a detailed design of the driving mechanism through results of analysis and confirmed it to satisfy design requirements.

1. 가 (automatic 가 load transfer switch; ALTS) 가 가 2 1 가 (driving part), 가가 (transfer switching part) (SF6) 가 (transmission part) (vacuum interrupter; VI) (blade contact) **ALTS** 가 E-mail: wschung@lgis.com TEL: (043)261-6521 FAX: (043)261-6629 LG

(vacuum interrupter; VI)

(blade contact)

ALTS

가 1 2 가 **ALTS** 가 가 (trial (2, 3)and error) 가 (multibody dynamics) Driving part . 70 (4, DADS, ADAMS 5) **ALTS** (simulation) ALTS (flat spring) **ALTS** Transmission part (a) Driving and transmission parts of driving 2. **ALTS** mechanism **ALTS** Blade contact (driving mechanism) Fig.1(a) (driving part) (transfer switching part) (transmission part) . Fig.1(b)

(b) Transfer switching part

Fig. 1 Structure and operation of ALTS

Vacuum

interrupter

가

3.

3.1
Fig. 2 CAE CAD

Database
, S/W
, CAD 3
Pro/Engineer 7 ...

Fig. 3

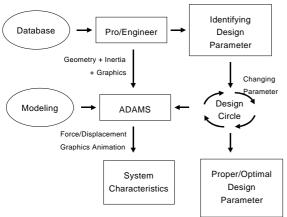


Fig. 2 Design Procedure based CAE/CAD

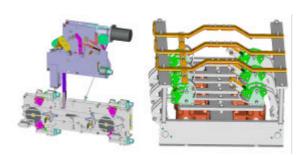


Fig. 3 Detailed design of ALTS using Pro/Engineer

Fig. 4 ADAMS
(dynamic model)
Pro/Engineer
Fig. 3
Hertz
ALTS

7
(busbar)
(friction effect)

(flat spring)

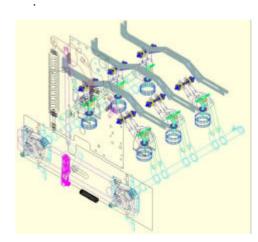
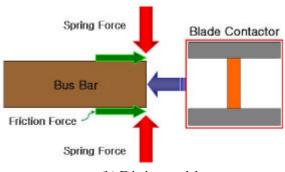



Fig. 4 Dynamic model of ALTS

(a) Moving blade contactor

(b) Friction model

Fig. 5 Friction effect by contact spring in blade contact of switch mechanism

3.1.1 (blade contactor) (busbar)

Fig. 5(a)

•

Fig. 5(b)

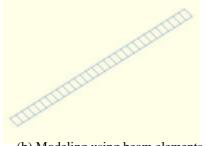
3.1.2

ALTS .

. 24ms 가 . . ,

•

Fig. 6(a)
Fig. 6(b)


ADAMS

(flexible)
(beam element)
(0.6mm)

20mm

(a) Flexible flat spring

(b) Modeling using beam elements

Fig. 6 Modeling of flexible flat spring in blade contact of switch mechanism

3.2

VI 4 가 . ,

. Fig. 7

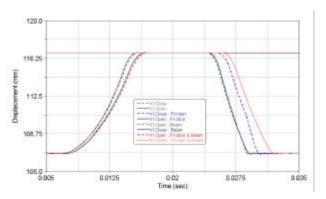


Fig. 7 Simulation results according to friction and beam effects

. Table 1

ms

Table 1 Opening and closing velocity of VI moving contactor and transfer switching time in simulation

	Opening Velocity	Closing Velocity	Switching Time
No friction & beam effects	1.21 m/s	2.01 m/s	21.1 ms
Friction effect	1.11 m/s	1.85 m/s	22.8 ms
Beam effect	1.17 m/s	1.92 m/s	21.8 ms
Friction & Beam effect	1.05 m/s	1.52 m/s	25.1 ms

4.

ALTS
VI 7;
VI 24V ALTS

Fig. 8 ALTS . VI , Fig. 9

Motion Analyzer

가

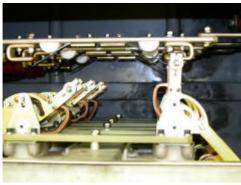


Fig. 8 Prototype of driving and switch mechanism parts of ALTS

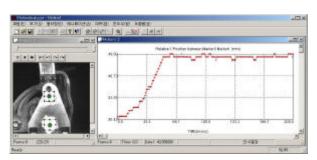
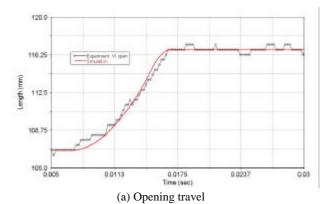



Fig. 9 Measurement of opening and closing travels of moving contactor of VI using high-speed camera

Fig. 9 . Fig. 10 (a) , Fig. 10(b)

ALTS . Fig. 11

Table 2

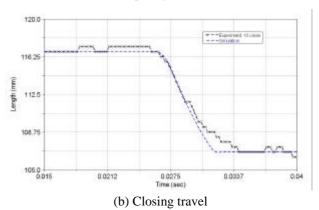


Fig. 10 Opening and closing travels of moving contactor of VI in experiment and simulation

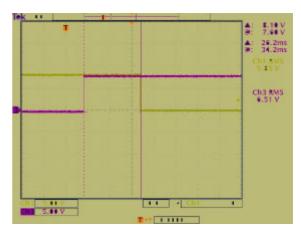


Fig. 11 Transfer switching time of ALTS (experiment)

Table 2 Comparison of ALTS characteristics between simulation and experiment

	Open Velocity	Close Velocity	Switching Time
Experiment	1.01 m/s	1.25 m/s	27.4 ms
Simulation	1.05 m/s	1.52 m/s	25.1 ms

5.

1 2

- (1) Willis, H. L., 1997, *Power Distribution Planning Reference Book*, Marcel Dekker, Inc.
- (2) Van Sickle, R. C. and Goodman, T. P., 1953, "Spring Actuated Linkage Analysis to Increase Speed," Product Engineering, Vol. 24, pp. 152-157, July.
- (3) Bush, R. R. and Carter, G. K., 1953, "The Application of Analytical Methods in Power Circuit Breaker Mechanism Design," AIEE Pacific General Meeting, Vancouver, B. C. Canada, Sept. 1-4.
- (4) DADS(Dynamic Analysis and Design System) Reference Manual., Computer Aided Design Software Incorporated, Iowa, U.S.A.
- (5) ADAMS(Automated Dynamic Analysis of Mechanical System) Reference Manual., Mechanical Dynamics Incorporated, U.S.A.